MITIGATION SOLUTIONS TO HIGH AMINE EMISSIONS DUE TO AEROSOLS AND PARTICULATES CONTAINED IN OIL REFINERY FLUE GASES
NETL Conference
PITTSBURGH 21-25 AUGUST 2017
THOMAS DE CAZENOVE
Introduction

- Particle/aerosol-rich flue gas as RFCC flue gas
- CO$_2$ capture amine plant
- Acceptable amine emissions and solvent losses
- Mitigation measures
- Pre-treatment technology
Content

1. 2015 test results on diluted RFCC flue gas
2. Maximum acceptable particle / aerosol concentration for operation with MEA
3. New Brownian Diffusion filter installed on RFCC flue gas (description and performance test results)
4. On-going aerosol test campaign on RFCC flue gas with MEA
Findings from the aerosols tests carried out in 2015 on diluted RFCC flue gas with MEA
Amine plant overview and test flow diagram

MEA Emissions:
- FTIR- Gasmet
- FTIR-Finetec
- PTR-TOF-MS

Main operation parameters:
- Lower Water Wash temperature
- Lean feed temperature

Electrical Low pressure Impactor

- **CHP flue gas supply**
- **Water Washes**
- **Absorber**
- **CHP DCC**
- **RFCC DCC**
- **RFCC flue gas supply**
- **Depleted flue gas**
- **CO₂ concentration:** 3.7% 8% 12.7%
- **Particle number concentration**

Product CO₂

- **Steam condensate**
- **Flash drum**
- **Compressor**
- **Steam**
Inlet particle size distribution to the absorber measured by ELPI+

The particle size distribution of the mixed flue gas is similar to the RFCC flue gas but the number of particles is reduced.
Findings:

• Higher aerosol / particle concentration results in higher MEA emissions (from 1 to 25 ppmv)
• Higher CO_2 concentration in flue gas results in lower MEA emissions (e.g. from 25 to 5 ppmv)
• Higher lean amine temperature results in lower MEA emissions (between 30 and 50%)
• Higher water wash temperature results in lower MEA emissions (half)
Maximum acceptable particle / aerosol concentration for operation with MEA
Findings:

- MEA emissions acceptable with max. 500 000 particles/cm³
- And adequate control of the lean amine temperature and the water wash temperature.
- MEA emissions due to flue gas aerosols are predictable
New Brownian Diffusion filter installed on RFCC flue gas
(description and performance test results)
• To prevent too high solvent losses, emissions of amines and degradation products
• Removal of particles / aerosols from RFCC flue gas.
• Evaluation of various technologies and test of a pilot Brownian Diffusion (BD) filter done at TCM in 2015 validated this technology for test purpose (removal efficiency and dP).
• A 35000Sm3/h Brownian Diffusion filter installed end of 2016 upstream amine plant absorber
• A by-pass line around the BD filter enables testing at a wide range of particle concentrations
• Modification of absorber water wash sections for capacity increase
Process Flow Diagram
Description

- Brownian diffusion type glass fibre candle filters for removal of aerosols.
- Candles lifespan 4 years.
- 8 cm/s apparent velocity.
- Specific demister below (upstream) for removal of flue ash.
Performance test results:

- 7 weeks test at design flow rate
- Higher particles / aerosols removal efficiency than design: > 98% for a broad range of particle size (0.01 – 10 µm)
 - Inlet: 15 – 30 \(10^6\) particles / Ncm\(^3\)
 - Outlet: < 0.25 \(10^6\) particles / Ncm\(^3\)
- Pressure drop below 20 mbar at design flow rate and particles / aerosols composition
On-going aerosol test campaign on RFCC flue gas with MEA – part of AeroSolve project funded by the Norwegian CLIMIT program
Objectives of AeroSolve project

• Obtain a deeper understanding of phenomena that lead to amine emissions by mist
• Establish criteria for effective control of flue gas mist composition via combinations of WESP, BDU and Sulphur pre-scrubbing prior to amine absorption
• Develop methodologies for mist quantification, monitoring and characterization
• Test effects of operating conditions, pre-treatment options and mist reducing technologies under full-scale plant operation conditions
• Establish knowledge to allow the techno-economic optimisation of aerosol control at industrial scale.
Concluding Remarks

• Better understanding of amine emissions by aerosols.
• Tested effects of operating conditions on aerosols growth and resulting amine emissions.
• Tested efficiency and capacity of Brownian Diffusion filtration technology as a pre-treatment solution for the RFCC flue gas.
• Testing proprietary amines on RFCC flue gas at TCM is possible.
• On-going test with research and industrial partners to establish deeper knowledge on how to control amine emissions in a cost effective way.
Thank you for your attention!!!

Acknowledgments to TCM DA owners