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• 3 year project from October 2014-September 2017.
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• This work was designed to perform realistic analysis of 
geomechanical risk factors related to CO2 storage:
 Which reservoir rock formations are more fractured in the region?

 Which rocks have larger risk factors related to subsurface deformation?

 What are the key methods and tools for evaluating geomechanical 
effects of CO2 storage in deep layers?

 How can these methods be safely and cost effectively employed?

 How can we better understand basin-scale stress-strain regime to more 
accurately define stress magnitude at depth?
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Objectives
• Characterize fractured 

reservoirs stress/strain setting 
in Appalachian Basin region.

• Assess CO2 storage 
processes based on rock core 
tests and geophysical logging.

• Evaluate the potential and 
effects of subsurface 
geomechanical deformation.
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Basin Scale Stress-Strain Analysis
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• Analyze regional geologic stress regime, fracture density, 
geomechanical parameters.

Geological Structure
Subsurface Stress Orientation

Geophysical Image Logs 
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• 1,760 fractures/breakouts analyzed from 10 wells’ image 
logs, fractures interpreted for:
 Fracture intensity variation spatially 

 Predominant fracture orientation.

Fracture Intensity

Fracture Orientation
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• Geomechanical test data for region was compiled and 
analyzed for spatial, population trends.

• Data was supplemented with tests on 8 rock core samples.

Parameter
Confining 
Pressure

(psi)

Bulk 
Density
(g/cc)

Compressional 
Velocity

(ft/s)

Shear 
Velocity

(ft/s)

Dynamic 
Young's 
Modulus
(1e+6 psi)

Dynamic 
Poisson's 

Ratio

Bulk 
Modulus
(1e+6 psi)

Shear 
Modulus
(1e+6 psi)

Compressive 
Strength

(psi)

Static Young's 
Modulus
(1e+6 psi)

Static 
Poisson's 

Ratio

Count 50 50 39 39 39 39 39 39 44 44 44

Minimum 460 2.24 12500 7636 4.44 0.085 2.17 1.92 15,161 1.87 0.151

Maximum 3160 2.83 22629 13199 16.22 0.350 11.38 6.53 89,225 11.45 0.417

Range 2700 0.59 10129 5563 11.78 0.27 9.22 4.61 74,064 9.57 0.266

Median 1650 2.60 17094 9568 8.78 0.26 5.74 3.44 30,020 5.77 0.26

Mean 1656.60 2.60 17302.97 9791 8.69 0.25 6.35 3.47 33,136 6.23 0.26
Sample 
Standard 
Deviation

615.94 0.15 2592.66 1182.57 2.48 0.07 2.71 0.96 15,529 2.59 0.07
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Technical Status- Geomechanical Conditions
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• Fracture treatment data used to help constrain in-situ stress magnitudes.
• More than 20,000 data compiled on instantaneous shut-in pressures and 

breakdown pressures from KY, MI, NY, OH, WV. Data suggest ISIP
(~Shmin) gradient of ~0.7-1.0 psi/ft
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• 3 Sites identified for more detailed analysis & geomech. 
simulations.
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• >9700 ft. of image log data processed from 3 wells to 
identify natural fractures, breakouts, drilling induced 
fractures.
 Arches site
− 2,650 ft. analyzed through the Rose Run, Copper Ridge, Davis Shale, 

Eau Claire, and Mt. Simon formations

 East-Central Appalachian Basin site
− 3,600 ft. analyzed through the Queenston, Utica, Point Pleasant, 

Trenton, Black River, Gull River, Wells Creek, Beekmantown, Rose Run, 
Copper Ridge, Conasauga, Maryville, and Basal Sand

 Northeastern Appalachian Basin site
− 3,400 ft. analyzed through the Utica, Trenton-Black River, Little Falls, 

Rose Run, Galway A Dolomite, Galway B Sand, Galway B Dolomite, and 
Galway C Sand
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• Arches site: 134 fractures, 55 
induced fractures, 5 micro-faults, 
and 586 breakouts were 
interpreted on image logs.
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• East-Central Appalachian 
Basin site: 70 fractures, 2 
micro-faults, 242 breakouts, 
522 induced fractures.
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• East-Central 
Appalachian Basin 
site: Several 
Deformed beds at 
the Basal Sand-
Precambrian 
contact.

Cambrian Mt. Simon

Precambrian Gneiss

Deformed
Beds
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• Northern Appalachian Basin 
Site: 73 fractures, 20 induced 
fractures, 4 micro-faults, and 
12 breakouts were interpreted 
on image logs.
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• Image log analysis, examination of rock core, and thin 
sections suggest sparse fractures in deeper 
Ordovician-Cambrian age CO2 storage zones.

Arches Site East-Central 
Appalachian Basin site

Northern Appalachian 
Basin site
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Technical Status- Site Analysis
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• Geologic models were built for the 3 sites based on regional 
well logs, structural geology, and hydraulic parameters.
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E-Central Appalachian 
Basin Site

Northern Appalachian 
Basin Site
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Geomechanical 
Properties

Petrophysical 
Properties

• Geomechanical and 
petrophysical properties not 
well-defined in deep saline 
formations

• Basic and advanced well 
logs were analyzed to 
derive geomechanical and 
petrophysical parameters to 
define CO2 injection and 
cap rock units
 mineralogy, porosity, 

permeability, density, Young’s 
modulus, Poisson’s ratio, 
vertical stress, and horizontal 
stresses
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Ex. Arches Mount Simon Sandstone:
Divided Basal Sand reservoir into 7 
units that are distinct, in terms of 
poro-elastic properties for coupled
flow-geomechanical simulation

• Geomechanical layers were 
defined for key storage and 
caprock formations
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• Coupled fluid-flow reservoir geomechanics simulations 
were completed for the 3 test study areas.



Technical Status- Geomech Simulation
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Analysis Framework for Coupled Fluid-Flow Geomechanics Simulations
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• Coupled flow-geomechanics simulations used to assess:
Vertical uplift
Fracture activation
 Induced seismicity
Safe operation protocols

 
WELL Site Image Log Intervals 

(ft.) 
HSTRESS Log Intervals 

(ft.) 
Northeast Appalachian Basin 3,870-7,305 3,880-7,282 

East-Central Appalachian Basin 5,024-8,709 3,090-8,660 

Arches 906-3,700 170-3,704 
Total Footage Interpreted 9,914 12,506 

OGS CO2

Waldo-Oakleif

Duke Energy #1

Am. Aggregates

Northern 
Appalachian 
Basin Site 
well

Wells with 
log data

Northern
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• Coupled flow-geomechanics simulations metrics:
Gas Saturation Pressure

Δ Min. Effective Stress Volumetric Strain
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Scenario # Shear 
Failure?

Tensile 
Failure?

Surface 
Uplift (mm)

Storage Capacity 
(millions of MT)

1 - Base Case 
(Most Conservative)

No No 32 11.25

2  No No 32 11.25
3 No No 27 11.25
4 No No 22 12.5
5 

(Most Optimistic)
No No 1.2 38.25

• How much CO2 can we safely inject and store within 
reasonable geomechanical constraints?

• Coupled flow-geomechanics simulations results were 
analyzed to examine geomechanical constraints on storage 
capacity.
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• Together, these three study areas provide a realistic portrayal of the 
range of geomechanical impacts of CO2 storage in the Midwest U.S.

• .
Arches Site East-Central 

Appalachian Basin site
Northern Appalachian 

Basin site

No indication of tensile or shear failure, 
The stress-strain perturbations are 
isolated beneath the caprock. Given 
the shallow depth of the Mount Simon, 
up to 32 mm of uplift may be expected 
at the surface >10 million metric ton 
capacity per well for 30 year injection 
scenario.

Simulation results showed that 
commercial-scale injection was 
not feasible due to extremely 
low injectivity. Geomechancial
effects secondary issue. Maybe 
a fracture reservoir zone.

No tensile or shear failure, stress-strain 
perturbations isolated beneath the caprock, 
up to 4 mm of uplift may be expected at the 
surface (due to higher Young’s modulus 
values and the deeper injection zone), 30-
year effective capacity of ~10 million metric 
tons CO2 ,attractive candidate for stacked, 
multi-reservoir storage of commercial-scale 
volumes of CO2.
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• Vertical profile (from 
the surface to the 
injection zone) of the 
minimum horizontal 
effective stress 
before and after 
injection suggests 
minor effects into 
caprock and shallow 
intervals. 

Arches Site
East-Central 

Appalachian Basin site



Technical Status- Guidance for 
Geomechanical Site Characterization
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• Guidance document developed for 
sites with geomechanical concerns in 
the following areas:
 Geophysical Logging

 Geomechanical Rock Core Testing

 Injection Testing

 Geomechanical Monitoring

• Conclusion- many geomechanical 
testing, monitoring, and operating 
options available to ensure safe, 
secure CO2 storage.
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Marcellus Well
Utica-Pt. Pleasant Well
Large CO2 Pt. Source

All locations approximate

• There are many deep saline formations and depleted oil & gas fields 
suitable for CO2 storage requiring consideration of the potential 
interaction with unconventional shale gas development. 

• Mapping of 10,719 Marcellus and 2,114 Utica-Point Pleasant 
unconventional well top-hole and bottom-hole locations and true 
vertical depths portrays the wells’ spatial distribution in the subsurface.

Ohio
Pennsylvania

West
Virginia
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• Stimulated reservoir volume extends from well along 
multiple treatment stages.  Many (50-75) stages may form 
a sort of “fracture tunnel” in the subsurface.

• While large areas are covered by horizontal shale gas 
SRVs, they are mostly limited to discrete, vertical shale 
intervals, which are not key caprocks for CO2 storage.

Well Pad

Horizontal
 Well Path

Stimulated
Reservoir
 Volume

Treatment
  Stages

Horizontal Well 
Treatment Stages

SRV

Technical Status- Shale Gas Risk Factors
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• More than 13,000 horizontal shale gas wells were mapped 
to determine their impact on CO2 storage zones.

Marcellus

Technical Status- Shale Gas Risk Factors
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Utica-Pt. Pleasant
Technical Status- Shale Gas Risk Factors
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• Organic shales in the Midwest are 
not considered primary caprocks for 
CO2 storage formations

• Marcellus shale & Utica Point-
Pleasant shale are vertically 
separated from most key CO2
storage rock formations by several 
caprock layers and/or intermediate 
layers with  combined thickness 
>1,000 feet in most areas. 
Exception = Oriskany Sandstone. 

Technical Status- Shale Gas Risk Factors
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• Geomechanical simulations 
suggest that stress changes from 
CO2 storage applications are 
unlikely to affect developed shale 
gas intervals where they might 
activate previously hydraulically 
fractured zones. 

• Potential geomechanical effects 
on legacy oil & gas wells appear 
to be limited to areas with both 
CO2 storage zones and shale gas 
development, mostly in northern 
West Virginia and southwestern 
Pennsylvania, where there is a 
high  concentration of Marcellus 
wells.

Technical Status- Shale Gas Risk Factors
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2. Systematic assessment of the stress-strain setting for 
geologic formations in the Appalachian Basin,

3. Compile geomechanical parameters & data analysis,

4. Petrophysical log analysis and integration,

5. Methodology for evaluating potential geomechanical stress at 
CO2 storage sites, 

6. Reservoir simulations to evaluate geomechanical deformation 
in geologic reservoirs in the region,

7. Caprock simulations, and 

8. Assessment of CO2 storage in areas with hydraulic fracturing 
for shale gas development.

Year 1
Year 2

Year 3

• Technical tasks complete. Remaining work = Final Technical Reporting
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• Analysis on natural fracture orientation indicates a complex 
pre-dominant northeast-southwest trend in horizontal 
stress.

• Processing and analysis of 9,700 ft of geophysical image 
logs provides a better understanding of geomechanical 
conditions and features in the Midwest U.S.

• Guidance developed for sites with geomechanical concerns 
for geophysical logging, rock core testing, injection testing, 
and geomechanical monitoring.

• Marcellus shale & Utica Point-Pleasant shale are vertically 
separated from most key CO2 storage rock formations by 
several caprock layers and/or intermediate layers. 
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• Description of geomechanical setting for sites in the 
Arches Provinces, Northeast Appalachian Basin, and 
Northern Appalachian Basin depict variations in geologic 
storage across the region.

• Coupled CO2 injection flow-geomechanics simulations 
illustrate geomechanical effects and constraints on CO2
injection rates, storage capacity, and geomech effects.

• Together, research provides a realistic portrayal of the 
range of geomechanical impacts of CO2 storage in the 
Midwest U.S. Acquiring site-specific geomechanical 
parameters is essential for a wholistic evaluation of CO2
injection sites. Results generated in this research benefit 
the establishment of CO2 storage applications.



Synergy Opportunities
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• Project has significant synergies with other ongoing work 
on carbon storage technologies (carbon capture & 
storage), shale gas developments, other CO2 storage 
research.

• Provides a better understanding of geomechanical stress 
parameters for Midwest U.S., a key issue for CO2 storage 
in the region’s deep rock formations.

• Reduces uncertainty related to existing/future power plant 
locations by mapping key geomechanical items.

• Results may be used for issues like induced seismicity, 
safe injection protocols, and system design.
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• Systematic inventory of site-specific geomechanical parameters for 
potential CO2 storage reservoirs in the Midwest U.S.

• Better understanding of stress parameters for the region, which are 
key input for geomechanical analysis.

• Reduction in uncertainty related to key geomechanical analysis 
input, such as magnitude of geomechanical stress in the reservoirs.

• Methodology for characterizing deep rock formations with 
geophysical logs, rock core tests, geomechanical analysis, and CO2
storage potential. 

• Support research on induced seismicity in the reservoirs by 
developing a regional stress framework and determining safe 
injection pressures.

• Assessment of the impact of shale gas development on CO2 storage 
potential for the region.
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Benefit to the Program
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• The project addresses FOA 1037 Area 
of Interest 1-Geomechanical Research.

• Specifically, research impacts include:
 characterizing the paleo-stress/strain setting 

in the Midwest U.S., 

 defining geomechanical parameters, 

 evaluating the potential for (and effects of) 
subsurface deformation,

 assessing CO2 storage processes based on 
rock core tests and geophysical logging in 
the regions being considered for large-scale 
CO2 storage. 
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• Geomechanical stability of 
rock formations has been 
identified as a major challenge 
to large-scale carbon capture 
and storage applications.

• Faults, fractures, seismic 
stability can affect CO2
injection potential and storage 
security.

Sminchak, J.R., and Gupta, N.  2003.  Aspects of induced seismic 
activity and deep-well sequestration of carbon dioxide. Environmental 
Geosciences, v. 10, n. 2, pp. 81-89.
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• This work was designed to perform realistic analysis of 
geomechanical risk factors related to CO2 storage:
 Which reservoir rock formations are more fractured in the region?

 Which caprocks have larger risk factors related to fracturing?

 What are the key methods and tools for evaluating fractured zones 
in deep layers?

 How can these methods be safely and cost effectively employed?

 How can we better understand basin-scale stress-strain regime to 
more accurately define stress magnitude at depth?
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• The project addresses 
geomechanical issues for CO2
storage applications. Specifically, 
research impacts include:
 characterizing the paleo-stress/strain 

setting in the Midwest U.S., 

 defining geomechanical parameters, 

 evaluating the potential for (and 
effects of) subsurface deformation,

 assessing CO2 storage processes 
based on site specific geomechanics. 
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• Project consists of 7 main technical tasks:
2. Systematic assessment of the stress-strain setting for geologic 

formations in the Appalachian Basin,

3. Compile geomechanical parameters & data analysis,

4. Petrophysical log analysis and integration,

5. Methodology for evaluating potential geomechanical stress at CO2
storage sites, 

6. Reservoir simulations to evaluate geomechanical deformation in 
geologic reservoirs in the region,

7. Caprock simulations, and 

8. Assessment of CO2 storage in areas with hydraulic fracturing for 
shale gas development.
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• 3 year project from October 2014-September 2017.
• Project is divided into seven main technical tasks.

Project Management (Task1)
Principal Investigator:

Joel Sminchak

Task 2
Basin Scale 
Stress-Strain 

Analysis

Babarinde

Task 3
Field Site(s) 

Geomechanical 
Data Analysis

Sminchak

Task 4
Petrophysical Log

Analysis &
Integration

Main

Task 5
Dev. of Methodology
for Geomechanical 

Site Characterization.

Conner

Task 6
Fractured Reservoir

Simulations 
for CO2 Storage

Pasumarti

Task 7
Caprock

Simulations 
for CO2 Storage

Pasumarti

Sponsors

DOE      ODSA

Technical 
Advisory Committee
Neeraj Gupta, Mark Kelley,

Srikanta Mishra

Project Lead

Task 8
CO2 Storage/

Shale Gas Risk 
Factor Assessment

Sminchak

Task 9
Reporting & Tech Transfer

Sminchak

Year 1 Year 2 Year 3

http://development.ohio.gov/default.htm
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• Project is designed 
with a sequential 
series of tasks 
over 3 years.

 BP1 BP2 BP3 

Task Name FY2015 FY2016 2017 
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 

Task 1: Project Management & Planning             
  1.1 Update Project Mgmt. Plan u             
  1.2 Project Management             
  1.3 Project Controls             
  1.4 NEPA Reporting             
Task 2: Basin Scale Stress-Strain Analysis             
  2.1 Tectonic Setting Def. for Midwest U.S.     u          
  2.2 Reg Analy. of Paleo-Stress Orien. & Mag             
  2.3 Sys. Rev. of Geomech & Petophys Prop.             
Task 3: Geomech. Data Analysis             
  3.1 Data Proc from Well Logs/tests             
  3.2 Geo and Geomech Des of Well Sites        u      
  3.3 Static Geomech Rock Core Test&Analys.        u      
Task 4: Petrophys Log Analysis & Integra.             
  4.1 Trans. Petrop Log Data to Geomech Para             
  4.2  Calibr. of Logs with Static Geomech Data             
Task 5: Dev. Meth for Geomech Site Char          u    
  5.1 Geophys. Logging Options for CO2 Sites             
  5.2 Geomech Rock Core Test Options             
  5.3 Inj Test Options for CO2 Storage Sites             
  5.4 Geomech Mon Options for CO2 Sites             
Task 6: Fractured Res. Sims for CO2 Stor.             
  6.1 Numerical Model Definition/Setup             
  6.2 Caprock Simulation Scenario Runs             
  6.3 Simulation Results Processing/Visualiz           u   
Task 7: Caprock Sims for CO2 Stor.             
  7.1 Numerical Model Definition/Setup             
  7.2 Caprock Simulation Scenario Runs             
  7.3 Simulation Results Processing/Visualiz           u   
Task 8: CO2 Stor/Shale Gas Risk Factors             
  8.1 Mapping CO2 Stor Zones & Shale Gas             
  8.2 Class. of Risk Factors Rel to CO2-Sh Gas           u   
Task 9: Reporting and Tech Transfer             
  9.1 Progress Reporting u  u  u  u  u  u  u  u  u  u  u  u  
  9.2 Technical Summary Reports    u     u    u   
  9.3 Final Reporting            u  
  9.4 Project Meetings u     u     u    u  
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