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Technical Status

e 3 year project from October 2014-September 2017.
* Project is divided into seven main technical tasks.
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Technical Status- Objectives
* This work was designed to perform realistic analysis of
geomechanical risk factors related to CO, storage:
= Which reservoir rock formations are more fractured in the region?
= Which rocks have larger risk factors related to subsurface deformation?

= What are the key methods and tools for evaluating geomechanical
effects of CO, storage in deep layers?

= How can these methods be safely and cost effectively employed?

= How can we better understand basin-scale stress-strain regime to more
accurately define stress magnitude at depth?




Technical Status- Objectives

Objectives

* Characterize fractured
reservoirs stress/strain setting
In Appalachian Basin region.

* Assess CO, storage
processes based on rock core
tests and geophysical logging.

e Evaluate the potential and
effects of subsurface
geomechanical deformation.




Technical Status-
Basin Scale Stress-Strain Analysis

* Analyze regional geologic stress regime, fracture density,

geomechanical parameters. o Subsurface Stress Orientatign
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Technical Status-
Basin Scale Stress-Strain Analysis

e 1,760 fractures/breakouts analyzed from 10 wells’ image
logs, fractures interpreted for:

Fracture Orientation

i

= Fracture intensity variation spatially

LI

= Predominant fracture orientation.
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Technical Status-
Geomechanical Parameters in the Region

* Geomechanical test data for region was compiled and

analyzed for spatial, population trends.

* Data was supplemented with tests on 8 rock core samples.
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Technical Status- Geomechanical Conditions

* Fracture treatment data used to help constrain in-situ stress magnitudes.

* More than 20,000 data compiled on instantaneous shut-in pressures and
breakdown pressures from KY, MI, NY, OH, WV. Data suggest ISIP
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Technical Status- Site Analysis

* 3 Sites identified for more detailed analysis & geomech.

simulations.
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Technical Status- Site Analysis

* >9700 ft. of image log data processed from 3 wells to
identify natural fractures, breakouts, drilling induced
fractures.

= Arches site

- 2,650 ft. analyzed through the Rose Run, Copper Ridge, Davis Shale,
Eau Claire, and Mt. Simon formations

= East-Central Appalachian Basin site

- 3,600 ft. analyzed through the Queenston, Utica, Point Pleasant,
Trenton, Black River, Gull River, Wells Creek, Beekmantown, Rose Run,
Copper Ridge, Conasauga, Maryville, and Basal Sand

= Northeastern Appalachian Basin site

- 3,400 ft. analyzed through the Utica, Trenton-Black River, Little Falls,
Rose Run, Galway A Dolomite, Galway B Sand, Galway B Dolomite, and
Galway C Sand
s —
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Technical Status

e Arches site: 134 fractures, 55

iInduced fractures, 5 micro-faults,

and 586 breakouts were
Interpreted on image logs.
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Technical Status

e East-Central Appalachian
Basin site: 70 fractures, 2
micro-faults, 242 breakouts,
522 induced fractures.
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Technical Status

e East-Central
Appalachian Basin
site: Several
Deformed beds at
the Basal Sand-
Precambrian
contact.
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Technical Status

Northern Appalachian
Basin Site

Drilling Induced Features

* Northern Appalachian Basin

Site: 73 fractures, 20 induced w0
fractures, 4 micro-faults, and e

4200

12 breakouts were interpreted o .
on image logs.

4500

4600 |__q

Azimuth (deg)

00 200 300
¥ ¢
L 2

Queenston SH =

—

4700

4800
4900
5000
5100
5200
5300
5400
5500

360°]

-

Utica

5600
5700
5800
5900
6000
6100
6200

Measured Depth (ft.)

;IEE=

Trenton-Black R

Tribes Hill

Little Eallg

6300

6400
6500

L

ROSE RUN ==
L]

6600
6700
6800

Galaway "A" Dolomite

& 6900

Galaway "B" Sand

7000
7100
7200

Galaway "B" Dolomite
Galaway*" C"*Sand

7300

Type: Brocsend

b (n & 53k 58 / OB4 (remsiont & QITBARE) (Gobl (= 5062 90 / 320 (remutert = 0937571}

# Breakout

Maximum Horizontal
Stress Direction

16

Potsdam

=Induced fracture

Measured Depth (ft.)

Northern Appalachian
Basin Site
Natural features

Azimuth (deg)

100 200 300

Queenston SH

()
[ ]
-
Utica

™
iy _ )

Trenton-Black R

.Tribes Hill

[ ]
Little Fallsﬁ

Rose Rigg
9

Galaway "A" D(ﬂom ite

Galaway "B" Sand

Galaway "B" Dolomite
Galaway ™" C""sand

T

Potsdam

® Fracture =sMicro Fault =sMinor Fault

I —
BATTELLE



Technical Status- Site Analysis

* Image log analysis, examination of rock core, and thin
sections suggest sparse fractures in deeper
Ordovician-Cambrian age CO, storage zones.
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Technical Status- Site Analysis

* Geologic models were built for the 3 sites based on regional
well logs, structural geology, and hydraulic parameters.
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Elevation (ft msl)

Technical Status- Site Analysis
E-Central Appalachian
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Technical Status- Site Analysis

- e Geomechanical and
=1 petrophysical properties not
T ey wg == well-defined in deep saline
==fis % | formations

Petrophysical Geomechanical}
Properties | Properties _ | » Basic and advanced well

logs were analyzed to
derive geomechanical and
petrophysical parameters to
oeume define CO, injection and
cap rock units
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Technical Status * Geomechanical layers were

oY defined for key storage and
CARBONATE .
— caprock formations
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Technical Status- Geomech Simulation

* Coupled fluid-flow reservoir geomechanics simulations
were completed for the 3 test study areas.
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Technical Status- Geomech Simulation

Analysis Framework for Coupled Fluid-Flow Geomechanics Simulations

Estimates for;
Permeability/Porosity
Thickness/Layering
Geomechanical

Uncertainty bandwidths for
geomechanical parameters.

Other site-specific sensitivities
(e.g. varying injection rate,
boundary conditions, etc.)

Natural fractures

Input

Parameters Numerically tuned
«  Other model shoe-box or single- _ o ) Stress-enhanced
ASSUMDHONS well radial model. Delineated injection scenarios permeability
p and corresponding models.
A A A A

Model Baseline Sensitivity Additional
Construction Simulations Studies Modeling
|
| | | |
v v v
- |
= Simulation-ready Pressure and Assessment of vertical uplift, risk [
.8' Reservoir and stress-field response in of shear and tensile failure
- Geomechanical grids, Aquifer, Caprock, and I
o with Aquifer, Caprock, Overburden fora baseline y

and Overburden. injection scenario.

Quantify effective capacity
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Technical Status- Geomech Simulation

= Vertical uplift

= Fracture activation

= Induced seismicity

= Safe operation protocols

Coupled flow-geomechanics simulations used to assess:
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WELL Site Image Log Intervals HSTRESS Log Intervals
(ft.) (ft.)
Northeast Appalachian Basin 3,870-7,305 3,880-7,282
East-Central Appalachian Basin 5,024-8,709 3,090-8,660
Arches 906-3,700 170-3,704
Total Footage Interpreted 9,914 12,506
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Technical Status- Geomech Simulation

* Coupled flow-geomechanics simulations metrics:

Gas Saturation Pressure

Gas Saturation 2030-01-01  J layer: 17

Pressure (psi) 2030-01-01  J layer: 17
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Technical Status- Geomech Simulation

* How much CO, can we safely inject and store within
reasonable geomechanical constraints?

* Coupled flow-geomechanics simulations results were
analyzed to examine geomechanical constraints on storage
capacity.

Scenario # Shear Tensile Surface Storage Capacity
Failure? Failure? Uplift (mm) (millions of MT)

1 - Base Case 11.25
(Most Conservative)

2 No No 32 11.25

3 No No 27 11.25

12.5
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Technical Status- Geomech. Sims

* Together, these three study areas provide a realistic portrayal of the
range of geomechanical impacts of CO, storage in the Midwest U.S.

Arches Site

Formula: Megative Volumetric Strain 2030-01-01  J layer: 17
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No tensile or shear failure, stress-strain
perturbations isolated beneath the caprock,
up to 4 mm of uplift may be expected at the
surface (due to higher Young’'s modulus
values and the deeper injection zone), 30-
year effective capacity of ~10 million metric
tons CO, ,attractive candidate for stacked,
multi-reservoir storage of commercial-scale
volumes of CO,.
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Simulation results showed that
commercial-scale injection was
not feasible due to extremely
low injectivity. Geomechancial
effects secondary issue. Maybe
a fracture reservoir zone.
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Technical Status- Geomech Sims

_ East-Central
Arches Site Appalachian Basin site
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Technical Status- Guidance for
Geomechanical Site Characterization
* Guidance document developed for

sites with geomechanical concerns in
the following areas:

= Geophysical Logging

= Geomechanical Rock Core Testing

= |[njection Testing

= Geomechanical Monitoring

* Conclusion- many geomechanical
testing, monitoring, and operating
options available to ensure safe,
secure CO, storage.




Technical Status- Shale Gas Risk Factors

* There are many deep saline formations and depleted oil & gas fields
suitable for CO, storage requiring consideration of the potential
interaction with unconventional shale gas development.

* Mapping of 10,719 Marcellus and 2,114 Utica-Point Pleasant
unconventional well top-hole and bottom-hole locations and true
vertical depths portrays the wells’ spatial distribution in the subsurface.

Marcellus Well
Utica-Pt. Pleasant Well
() Large CO2 Pt. Source

All locations approximate

-

‘ _Pennsylvania

\
A\
A\
)
. )
. \
\

wi West :
~Virginia~




Shale Gas Risk Factors

Technical Status-

e Stimulated reservoir volume extends from well along

multiple treatment stages. Many (50-75) stages may form

a sort of “fracture tunnel”

In the subsurface.

* While large areas are covered by horizontal shale gas

they are mostly limited to discrete, vertical shale
which are not key caprocks for CO, storage.

s S 2
> o 8
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n £ =
o
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Treatment Stages
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Technical Status- Shale Gas Risk Factors

* More than 13,000 horizontal shale gas wells were mapped
to determine their impact on CO, storage zones.
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Technical Status- Shale Gas Risk Factors

Utica-Pt. Pleasant
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Technical Status- Shale Gas Risk Factors

* Organic shales in the Midwest are
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Technical Status- Shale Gas Risk Factors

e Geomechanical simulations
suggest that stress changes from | ™ == corsomern
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15000

CO, storage applications are 0
unlikely to affect developed shale |™ — —ses=e
gas intervals where they might o 2
activate previously hydraulically |, =~ = e B
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Accomplishments to Date

* Technical tasks complete. Remaining work = Final Technical Reporting
\/ 2. Systematic assessment of the stress-strain setting for
geologic formations in the Appalachian Basin,
\/ 3. Compile geomechanical parameters & data analysis,

\/ 4. Petrophysical log analysis and integration,

\/ 9. Methodology for evaluating potential geomechanical stress at c_§
CO, storage sites, =
N

\/ 6. Reservoir simulations to evaluate geomechanical deformation

INn geologic reservoirs in the region,

. . <
v /. Caprock simulations, and g
/ 8. Assessment of CO, storage in areas with hydraulic fracturing (:,

for shale gas development.

I ——
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. essons Learned

* Analysis on natural fracture orientation indicates a complex
pre-dominant northeast-southwest trend in horizontal
stress.

* Processing and analysis of 9,700 ft of geophysical image
logs provides a better understanding of geomechanical
conditions and features in the Midwest U.S.

* Guidance developed for sites with geomechanical concerns
for geophysical logging, rock core testing, injection testing,
and geomechanical monitoring.

* Marcellus shale & Utica Point-Pleasant shale are vertically
separated from most key CO, storage rock formations by
several caprock layers and/or intermediate layers.

I ——
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. essons Learned

* Description of geomechanical setting for sites in the
Arches Provinces, Northeast Appalachian Basin, and
Northern Appalachian Basin depict variations in geologic
storage across the region.

* Coupled CO, injection flow-geomechanics simulations
illustrate geomechanical effects and constraints on CO,
Injection rates, storage capacity, and geomech effects.

* Together, research provides a realistic portrayal of the
range of geomechanical impacts of CO, storage in the
Midwest U.S. Acquiring site-specific geomechanical
parameters is essential for a wholistic evaluation of CO,
Injection sites. Results generated in this research benefit

the establishment of CO, storage applications.
-

38 BATTELLE



Synergy Opportunities

* Project has significant synergies with other ongoing work
on carbon storage technologies (carbon capture &
storage), shale gas developments, other CO, storage
research.

* Provides a better understanding of geomechanical stress
parameters for Midwest U.S., a key issue for CO, storage
In the region’s deep rock formations.

* Reduces uncertainty related to existing/future power plant
locations by mapping key geomechanical items.

* Results may be used for issues like induced seismicity,
safe injection protocols, and system design.

I ——
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Project Summary

e Systematic inventory of site-specific geomechanical parameters for
potential CO, storage reservoirs in the Midwest U.S.

* Better understanding of stress parameters for the region, which are
key input for geomechanical analysis.

* Reduction in uncertainty related to key geomechanical analysis
Input, such as magnitude of geomechanical stress in the reservoirs.

* Methodology for characterizing deep rock formations with
geophysical logs, rock core tests, geomechanical analysis, and CO,
storage potential.

e Support research on induced seismicity in the reservoirs by
developing a regional stress framework and determining safe
Injection pressures.

* Assessment of the impact of shale gas development on CO, storage
potential for the region.

I ——
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Benefit to the Program

* The project addresses FOA 1037 Area
of Interest 1-Geomechanical Research.

* Specifically, research impacts include:

= characterizing the paleo-stress/strain setting
in the Midwest U.S.,

= defining geomechanical parameters,

= evaluating the potential for (and effects of)
subsurface deformation,

= assessing CO, storage processes based on
rock core tests and geophysical logging in
the regions being considered for large-scale
CO, storage.

I ——
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Benefit to the Program

* Geomechanical stability of
rock formations has been
identified as a major challenge
to large-scale carbon capture
and storage applications.

e Faults, fractures, seismic
stability can affect CO,

Injection potential and storage
security.

Sminchak, J.R., and Gupta, N. 2003. Aspects of induced seismic
activity and deep-well sequestration of carbon dioxide. Environmental
Geosciences, v. 10, n. 2, pp. 81-89.
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Benefit to the Program

* This work was designed to perform realistic analysis of
geomechanical risk factors related to CO, storage:

= Which reservoir rock formations are more fractured in the region?
= Which caprocks have larger risk factors related to fracturing?

= What are the key methods and tools for evaluating fractured zones
in deep layers?

= How can these methods be safely and cost effectively employed?

= How can we better understand basin-scale stress-strain regime to
more accurately define stress magnitude at depth?




Project Overview

* The project addresses
geomechanical issues for CO,
storage applications. Specifically,
research impacts include:

= characterizing the paleo-stress/strain
setting in the Midwest U.S.,

= defining geomechanical parameters,

= evaluating the potential for (and
effects of) subsurface deformation,

= assessing CO, storage processes
based on site specific geomechanics.

NOT TO SCALE
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Project Overview

* Project consists of 7 main technical tasks:

2. Systematic assessment of the stress-strain setting for geologic
formations in the Appalachian Basin,

3. Compile geomechanical parameters & data analysis,
4. Petrophysical log analysis and integration,

5. Methodology for evaluating potential geomechanical stress at CO,
storage sites,

6. Reservoir simulations to evaluate geomechanical deformation in
geologic reservoirs in the region,

7. Caprock simulations, and

8. Assessment of CO, storage in areas with hydraulic fracturing for
shale gas development.

I ——
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Organization Chart

e 3 year project from October 2014-September 2017.
* Project is divided into seven main technical tasks.

Sponsors _
Ohio | i Project Lead Technical
N:TL 10 | services Agency AdVl sor C H
- — —_ y Committee
Batielle _
The Business of Innovation Neeraé (_';kupta' ma?‘( Kelley,
DOE ODSA rikkanta Mishra
Project Management (Task1) Task 9
Principal Investigator: " Reporting & Tech Transfer
Joel Sminchak Sminchak
«<—Year 1— <«— Year 2 > < Year 3 >
Task 2 Task 3 Task 4 Task 5 Task 6 Task 7 Task 8
Basin Scale Field Site(s) Petrophysical Log Dev. of Methodology  Fractured Reservoir Caprock CO2 Storage/
Stress-Strain Geomechanical Analysis & for Geomechanical Simulations Simulations Shale Gas Risk
Analysis Data Analysis Integration Site Characterization. for CO2 Storage for CO2 Storage Factor Assessment
Babarinde Sminchak Main Conner Pasumarti Pasumarti Sminchak
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http://development.ohio.gov/default.htm

Gantt Chart

* Project is designed
with a sequential
series of tasks
over 3 years.
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BP1

BP2

BP3

Task Name

FY2015

FY2016

2017

Q1]Q2|Q3

Q4

QL

Q2 | Q3

Q4

Q1L

Q2 | Q3 | Q4

Task 1: Project Management & Planning

1.1 Update Project Mgmt. Plan

1.2 Project Management

1.3 Project Controls

1.4 NEPA Reporting

Task 2: Basin Scale Stress-Strain Analysis

2.1 Tectonic Setting Def. for Midwest U.S.

2.2 Reg Analy. of Paleo-Stress Orien. & Mag

2.3 Sys. Rev. of Geomech & Petophys Prop.

Task 3: Geomech. Data Analysis

3.1 Data Proc from Well Logs/tests

3.2 Geo and Geomech Des of Well Sites

3.3 Static Geomech Rock Core Test&Analys.

Task 4: Petrophys Log Analysis & Integra.

4.1 Trans. Petrop Log Data to Geomech Para

4.2 Calibr. of Logs with Static Geomech Data

Task 5: Dev. Meth for Geomech Site Char

5.1 Geophys. Logging Options for CO2 Sites

5.2 Geomech Rock Core Test Options

5.3 Inj Test Options for CO2 Storage Sites

5.4 Geomech Mon Options for CO> Sites

Task 6: Fractured Res. Sims for CO; Stor.

6.1 Numerical Model Definition/Setup

6.2 Caprock Simulation Scenario Runs

6.3 Simulation Results Processing/Visualiz

Task 7: Caprock Sims for CO; Stor.

7.1 Numerical Model Definition/Setup

7.2 Caprock Simulation Scenario Runs

7.3 Simulation Results Processing/Visualiz

Task 8: COz Stor/Shale Gas Risk Factors

8.1 Mapping CO; Stor Zones & Shale Gas

8.2 Class. of Risk Factors Rel to CO,-Sh Gas

Task 9: Reporting and Tech Transfer

9.1 Progress Reporting

c
c
c

9.2 Technical Summary Reports

9.3 Final Reporting

9.4 Project Meetings
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