Carbon Life Cycle Analysis of CO,
EOR for Net Carbon Negative Oil
(NCNOQO) Classification

DE-FE0024433

Vanessa Nunez-Lopez
Bureau of Economic Geology
The University of Texas

US. Department of Energy

National Energy Technology Laboratory
Mastering the Subsurface Through Technology Innovation, Partnerships and Collaboration:
Carbon Storage and Oil and Natural Gas Technologies Review Meeting

August 1-3, 2017



Presentation Outline

Project Overview: Goals and Objectives
Technical Status

Accomplishments to Date

Lessons Learned

Synergy Opportunities

Project Summary



Problem Statement

» Is CO,-EOR a valid option for greenhouse gas emission reduction? Are geologically stored
carbon volumes larger that direct/indirect emissions resulting from CO,-EOR operations?

Carbon emitted

Carbon Carbon utilized Oil produced, refined,
captured (CO,-EOR) burned.

Carbon stored




Project Overview:
Goals and Objectives

Goal: To develop a clear, universal, repeatable methodology for making the
determination of whether a CO,-EOR operation can be classified as Net
carbon Negative Oil (NCNO)

CO,-EOR/Storage Carbon Balance

Objectives:

Identify and frame critical carbon
balance components for the
accurate mass accounting of a
CO,-EOR operation.

Develop strategies that are
conducive to achieving a NCNO
classification.

Develop a comprehensive, yet
commercially applicable,
monitoring, verification, and
accounting (MVA) methodology.




Selection of system boundaries for NCNO classification:
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Technical Status: Carbon Mass Accounting
Methodology at the EOR Site
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Technical Status: Cranfield Static Model
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Technical Status: Numerical Simulation

Compositional model simulates CO, injection
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CO, Injection Scenarios
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CO, Injection Scenarios
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CO, Injection Scenarios

Net CO, Stored Oil Recovery Factor
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% Trapping contribution for WAG

Trapping Mechanisms: WAG- CGl
evolution

B Structural ™ Solubility ® Residual
100 100

B Structural B Solubility ® Residual

(0]
o

80

D
o

60

N
o

40

N
o

% Trapping contribution for CGI

Time (years)

Time (years)

CGl WAG

12



Carbon Balance Evolution: Gate to Gate
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Accomplishments to Date

e Accomplishments:
Selection of system boundaries relevant to NCNO classification: gate-to-grave

|dentification of critical CO, emission components within the EOR site
Gathered and classified Cranfield mass accounting data

Developed an EOR site carbon mass accounting procedure

Built Cranfield static model

Completed historic and EOR history matching

Started numerical simulation tasks

Build a model for energy consumption of the CO,-EOR operation

Started scenario analysis

© 5 5 SNEENEE N N N N

Linked results from numerical simulations with energy consumption model

e Future Plans:
— Develop an MVA plan
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Lessons Learned

CO, storage is greatest in absolute volume terms for the CGI scenario, with
1.5 million tons (Mt) CO, stored. In decreasing order, this is followed by 1.3
Mt CO, stored for WAG, and 0.6 Mt for both WCI and WAG+WCI scenarios.
CGil injects a larger gross volume of CO,, so a larger volume is left behind.

CO, net utilization ratio, defined as the amount of CO, injected to produce 1
unit of oil, is lowest for hybrid WAG+W(CI scenario, followed by WCI, WAG
and CGl in increasing order.

Oil production is greatest in absolute volume for the CGI scenario, with 4
million barrels (MMbbl) of incremental oil produced, versus 3 MMbbl for
WAG, 2.5 MMbbl for WCI and 2 MMbbl for the hybrid WAG+WCI scenario.

Our numerical simulations, based on Cranfield CO,-EOR project data,
demonstrate that flood efficiency variations are significant and mostly
depend on the operator's selected field development strategy. These
variations greatly affect the carbon balance of a project.
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Synergy Opportunities

— Our NCNO methodology can be applied to the development of
any hydrocarbon resource (conventional or unconventional) for
Carbon Balance assessments.
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Appendix

— These slides will not be discussed during the presentation, but
are mandatory.
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Benefit to the Program

Program goals being addressed.

(4) Develop Best Practice Manuals for monitoring, verification, accounting (MVA),
and assessment; site screening, selection, and initial characterization; public
outreach; well management activities; and risk analysis and simulation.

In support of:
(1) Develop and validate technologies to ensure 99 percent storage permanence.

Project benefits statement.

The project will conduct research under Quantifying the Carbon Balance of CO,-
EOR Operations and ldentifying “Net Carbon Negative Oil”, via development of a
reliable, clear, repeatable and universal CO2-EOR mass accounting methodology.
The overall impact of this study will be the economic influence that a project
classified as Net Carbon Negative Oil (NCNO*) would have on a CO2-EOR
operation, if future laws and regulations provide value to the emissions and/or
storage of CO..

*NCNO is defined in the FOA as oil whose carbon emission to the atmosphere, when burned or otherwise used, is
less than the amount of carbon permanently stored in the reservoir in order to produce the oil
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Organization Chart

Lead Organization
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Senior Oversight
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Admisistration
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Research Associate
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Research Scientist
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Sr. Research Scientist
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Postdoctorate Scholar

BEG Researcher
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Gantt Chart

BUDGET PERIOD 1

BUDGET PERIOD 2

BUDGET PERIOD 3

Year 1:FY 2015

Year 2: FY 2016

Year 3: FY 2017
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Task

Tasks

Carbon Life Cycle Analysis of CO,-EOR for Net Carbon Negative Oil
[NCNO) Classification

Project Management, Planning, and Reporting

1.1

Revision and Maintenance of Project Management Plan

D11

1.2

Management and Reporting

Project Framework and Data Gathering

Reservoir Mass Accounting Methodology

D, 3.1

Static and Dynamic Modeling

4.1

Static Model

4.2

EOR-storage performance model development

D, 4.2

Monitoring, Verification, and Accounting (MVA) methodology

Q = Quarterly Report; A = Annual Report; F = Final Report

D, 5.0

D = Deliverable
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