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• To build and test a downhole fracture diagnostic tool that can be 
used to estimate the orientation and length of the ‘propped’ 
fracture (not the created fracture) 

• To map the distribution of proppant in the fracture. 

Objectives
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• The project has the following components:
• Develop a forward model for the proposed EM technology taking into 

account real geological and reservoir constraints.

• Source and test proppants in the laboratory for electrical and material 
properties for their suitability in deployment in the field.

• Design, build and field test a low frequency electromagnetic tool.

• Invert the field data to estimate the propped fracture geometry, and 
present a stimulated rock volume map.

Technical Approach
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Project Tasks

• Task 1.0 - Project Management Plan 

• Task 2.0 - Development of forward model using proposed tool and 
different fracture geometries

• Task 3.0 - Lab testing of selected proppants for electrical and material 
properties

• Task 4.0 – Design and construction of a low frequency electromagnetic 
tool

• Task 5.0 – Laboratory and testing of tool in a shallow test site.

• Task 6.0 - Inverting the field data to obtain the fracture geometry
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Electrically Conductive Proppant 
Resistivity and Permeability  

Lab Measurements
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Experimental Method for Resistivity Measurements

• A 4-electrode method was used to do the measurements in a core
holder.

• Alternating current (AC) was applied on the current-
carrying electrodes, while the voltage was measured on
the voltage-sensing electrodes.

• Confining pressure can be applied. Saturation fluid could be tuned.



• 0% sand + 100% coke

• 25% sand + 75% coke

• 50% sand + 50% coke

• 75% sand + 25% coke

The ratio is based on mass.

1.5’

2’

4 mm
~3 mm

Before measurement After measurement

Experimental Method for Resistivity Measurements

Size:40-70 mesh & 70-100 mesh
Coke Density: ~2 g/cm3



Electrical Resistivity: 40/70 mesh

0% sand 1.99 × 10−4 Ω � 𝑚𝑚
@4000 psi

25% sand 3.64 × 10−4 Ω � 𝑚𝑚
@3000 psi

50% sand 6.28 × 10−4 Ω � 𝑚𝑚
@4000 psi

50% sand 
(sea 

water)

5.06 × 10−4 Ω � 𝑚𝑚
@5000 psi



Electrical Resistivity: 70/100 mesh

0% sand 2.12 × 10−4 Ω � 𝑚𝑚
@4600 psi

25% sand 2.64 × 10−4 Ω � 𝑚𝑚
@5000 psi

50% sand 5.73 × 10−4 Ω � 𝑚𝑚
@5000 psi

All with sea water



Electrical Resistivity: 70/100 mesh

75% sand (sea water) 3.18 × 10−3 Ω � 𝑚𝑚 @5000 psi



Experimental Method for Fracture 
Conductivity Measurements

• A Berea sandstone core of 1’’ diameter by 8’’ length was prepared with a fracture width of 1mm.
• The core was placed inside a Hassler sleeve core holder and evacuated to remove trapped air.
• Confining closure stress was applied for 24 hours, after which 3% brine solution was pumped through the

core at a range of constant flow rates.
• For each closure stress applied, the pressure drop across the core was measured and used to calculate the

fracture conductivity using Darcy’s Law.
• This procedure was repeated for incremental closure stresses from 1000 – 8000 psi.



Fracture Conductivity and Normalized Conductivity
Sand vs Coke: 40/70 mesh

FCD = kf*w / Lf*k

FCD = 5 / (250*10-4)

FCD = 200



Productivity Index: Fractured Vertical Wells
Ref: Friehauf and Sharma (2009)



Fracture Conductivity and Normalized Conductivity
Sand vs Coke 70/100 mesh



Summary of Lab Measurements
• The electric resistivity of the PC, under confining stress, was

measured to be in the range of 2 x 10-4Ω � 𝑚𝑚
• Size does not affect the electrical resistivity but does affect the

permeability.
• It is feasible to use mixtures of sand and PC if fracture conductivity is

a concern (large in-situ stresses).
• Both resistivity and permeability increase with increasing mass

percentage of sand at a given confining pressure.
• Brine has a minor effect on the measured resistivity because it is

usually much more resistive (~0.2 Ω � 𝑚𝑚) than petroleum coke.



Tasks

• Task 1.0 -- Project Management Plan 
• Task 2.0 - Development of forward model using proposed tool and 

different fracture geometries
• Task 3.0 - Lab testing of available proppants in the market for electrical 

and material properties
• Task 4.0 – Final design and construction of low frequency 

electromagnetic tool
• Task 5.0 – Laboratory and field testing of tool
• Task 6.0 -- Inverting the field data to obtain the fracture geometry
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Numerical Simulation
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Maxwell Equations:

arbitrary shape
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More details on the UT Austin EM forward-modeling software:
[3] P. Zhang, J. Shiriyev, Y. Brick, J. Massey, C. Torres-Verdin, A. E. Yılmaz, and M. Sharma, “Fracture diagnostics using a low frequency electromagnetic induction 
method,” in Proc. ARMA, June 2016
[3] A. Menshov, Y. Brick, C. Torres-Verdin, and A. E. Yılmaz, “Recent progress in rigorous algorithms for the fast solution of 3-D EM frequency-domain integral-equations,” 
to appear in Proc. 6th Int. Symp. 3-D Electromagnetics, Mar.  2017.

Electric-field integral-equation
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- Discretize geometry
expand unknowns

- Galerkin testing

- System of linear equations
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Numerical Simulations
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EM Induction Logging Tool

Δ𝑈𝑈𝑢𝑢𝑢𝑢 = Re −𝑗𝑗𝜔𝜔𝜇𝜇𝑜𝑜𝐴𝐴RX𝑁𝑁RX�𝐮𝐮 � 𝐇𝐇𝑣𝑣 𝐫𝐫Rx2 − 𝐇𝐇𝑣𝑣 𝐫𝐫Rx1
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EM Induction Logging Tool
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EM Induction Logging Tool

z

x

y

Open Hole

Δ𝑈𝑈
(V

)



EM Induction Logging Tool

z

x

y

Open Hole

Δ𝑈𝑈
(V

)



EM Induction Logging Tool

z

x

y

Open Hole

Δ𝑈𝑈
(V

)



EM Induction Logging Tool

z

x

y

Open Hole

Δ𝑈𝑈
(V

)



EM Induction Logging Tool

z

x

y

Open Hole

Δ𝑈𝑈
(V

)



EM Induction Logging Tool

z

x

y

Open Hole

Δ𝑈𝑈
(V

)



EM Induction Logging Tool

z

x

y

Open Hole

Δ𝑈𝑈
(V

)



EM Induction Logging Tool

z

x

y

Open Hole

Δ𝑈𝑈
(V

)



EM Induction Logging Tool

z

x

y

Open Hole

Δ𝑈𝑈
(V

)



EM Induction Logging Tool

z

x

y

Open Hole

Δ𝑈𝑈
(V

)



EM Induction Logging Tool

Δ𝑈𝑈𝑢𝑢𝑢𝑢 = Re −𝑗𝑗𝜔𝜔𝜇𝜇𝑜𝑜𝐴𝐴RX𝑁𝑁RX�𝐮𝐮 � 𝐇𝐇𝑣𝑣 𝐫𝐫Rx2 − 𝐇𝐇𝑣𝑣 𝐫𝐫Rx1
𝑙𝑙13

𝑙𝑙23

z
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y
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∆𝑈𝑈diff
𝑢𝑢𝑢𝑢 = Δ𝑈𝑈frac

𝑢𝑢𝑢𝑢 − Δ𝑈𝑈bore
𝑢𝑢𝑢𝑢 ≥ 𝑉𝑉resolution

α𝑢𝑢𝑢𝑢 = ⁄∆𝑈𝑈diff
𝑢𝑢𝑢𝑢 Δ𝑈𝑈bore𝑧𝑧𝑧𝑧 ≥ 𝑛𝑛 = 2 %



EM Induction Logging Tool

Δ𝑈𝑈𝑢𝑢𝑢𝑢 = Re −𝑗𝑗𝜔𝜔𝜇𝜇𝑜𝑜𝐴𝐴RX𝑁𝑁RX�𝐮𝐮 � 𝐇𝐇𝑣𝑣 𝐫𝐫Rx2 − 𝐇𝐇𝑣𝑣 𝐫𝐫Rx1
𝑙𝑙13

𝑙𝑙23

z

x

y

Open Hole

∆𝑈𝑈diff
𝑢𝑢𝑢𝑢 = Δ𝑈𝑈frac

𝑢𝑢𝑢𝑢 − Δ𝑈𝑈bore
𝑢𝑢𝑢𝑢 ≥ 𝑉𝑉resolution

α𝑢𝑢𝑢𝑢 = ⁄∆𝑈𝑈diff
𝑢𝑢𝑢𝑢 Δ𝑈𝑈bore𝑧𝑧𝑧𝑧 ≥ 𝑛𝑛 = 2 %

Short Spacing
𝑙𝑙1 = 1.2 m 𝑙𝑙2 = 1.5 m

Intermediate Spacing
𝑙𝑙1 = 5.0 m 𝑙𝑙2 = 5.6 m

Long Spacing
𝑙𝑙1 = 18.0 m 𝑙𝑙2 = 19.2 m



Tasks

• Task 1.0 -- Project Management Plan 
• Task 2.0 - Development of forward model using proposed tool and 

different fracture geometries
• Task 3.0 - Lab testing of available proppants in the market for electrical 

and material properties
• Task 4.0 – Final design and construction of low frequency 

electromagnetic tool
• Task 5.0 – Laboratory and field testing of tool
• Task 6.0 -- Inverting the field data to obtain the fracture geometry
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Axial TX coil on winding fixture with ferrite core to the side

Tank circuit, transmit coil with capacitor board on the right

Co-planar coil after construction

0.42 m

0.1 m

0.15 m

0.32 m

TOOL BACKBONE
(3" PVC Pipe, OD=3.500"
Sch 40:  ID=3.068"
Sch. 80:  ID=2.900")

CAPACITORS
TRANSMIT COIL

BUCKING COIL/AMPLIFIER ASSEMBLY
RECEIVE COIL

1.00 and 4.25 m

0.37 and 0.7 m

0.19 m
0.29 m

0.57 m

0.32 m

TOOL HOUSING
(4" PVC Pipe, OD=4.500"
Sch 40:  ID=4.026"
Sch. 80:  ID=3.826")

0.32 m

0.37 m

0.94 and 1.27 m

0.1 m

0.1 m

5.59 m (18.3 ft)

WIRE STRAIN RELIEF

RECEIVE AND
BUCKING
SIGNAL WIRES

WIRE STRAIN RELIEF

TRANSMIT
POWER
WIRES

5.79 m (19.0 ft)

4" PVC COUPLING
WITH 4" x 1/2" BUSHING

CLAMSHELL
TOP

COIL ASSEMBLY
SIDE VIEW

A

A

SECTION A-A
COIL MOUNTING

BRACKET

4" PVC COUPLING
WITH 4" x 1" BUSHING AND
1" SLIP x 1" FEMALE NPT ADAPTER

BOREHOLE CASING
(6" PVC Pipe, OD=6.625"
Sch 40:  ID=6.065"
Sch. 80:  ID=5.761")

fits inside

PUSHER RODS, 3 EACH
(1" PVC OR CPVC PIPE WITH 1"
MALE AND FEMALE NPT ENDS
OD=1.315"
Sch 40:  ID=1.049"
Sch. 80:  ID=0.957")

3.05 m (10.0 ft)

Lab test fixture diagram for LFIE tool

Initial bench testing of TX-RX coil setup

RX coils:
z-coil (right)
x/y coil (left)

Tool Construction and Lab Testing
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Comparison of Lab Results with Simulations



Lab test fixture for LFEI tool

− 𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈 𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀 𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅
Conductivity at 20℃: 33.4 − 35.8 ⁄MS m
Thickness: 25.4 ± 10% µm
− 𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅 𝐇𝐇𝐇𝐇𝐇𝐇𝐇𝐇𝐇𝐇𝐇𝐇: Plexiglass acrylic sheet
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Power Amplifier

Pre-amp PCB

SR830 DSP 
Lock-in-Amplifier

Tektronix 
MSO-scope 2024

Tx Coil Rx1 Rx2Power 
Amp

DC Source

2
2-1
12

1

Pre-amp PCB

O-scope

SR830 DSP 
Lock-in-Amplifier*reference: voltage source
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Lab Measurements
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• All coils have been tested to verify the given properties.
• A single coil configuration is tested at a time
• Transmitter coil currents are measured during tests and 

results are normalized with respect to currents.
• At every sampling point data have been recorded for a 

minute at least and signal to noise ratio is shown to be 
strong.

• Signals are referenced with respect to voltage around 
the transmitter coil. Reference phase is used to rotate 
the output channels to get in-phase (real) and 
quadrature (imaginary) components of received signals.
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Fracture Lab / Subsurface Models
− 𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈 𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀 𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅
Conductivity at 20℃ is 33.4 − 35.8 ⁄MS m
Thickness is 25.4 ± 10% µm
also verified with micrometer measurement
− 𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄 𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬
Plexiglass, PVC pipes, nylon rod and Lexan
− 𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂 𝐭𝐭𝐭𝐭 𝐫𝐫𝐫𝐫𝐫𝐫𝐫𝐫 𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬 𝐡𝐡𝐡𝐡𝐡𝐡𝐡𝐡𝐡𝐡𝐡𝐡𝐡𝐡𝐡𝐡𝐡𝐡 𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐟

a) Circular Fractures

b) Elliptical Fractures c) Rotated Fractures

x
y

30
 cm 18.2 cm

21.8 cm

40 cm

d) Subsurface Model

2: 1
4: 3
1: 1

12 cm

0°, 21°, 33°,
47° and 61°

12 cm

𝑟𝑟 = 20 cm
15 cm
10 cm

12 cm
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Comparison of Lab Results with Simulations
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Results – Lab Measurements
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Parameter Co-Axial Co-Planar Cross-Polarized
Surface Area >100 µV >10 µV <1 µV

Aspect Ratio >100 µV >10 µV <1 µV

Dip Angle >100 µV >100 µV >100 µV
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Results – Lab Measurements
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Parameter Co-Axial Co-Planar Cross-Polarized
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Results – Lab Measurements
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Tasks

• Task 1.0 -- Project Management Plan 
• Task 2.0 - Development of forward model using proposed tool and 

different fracture geometries
• Task 3.0 - Lab testing of available proppants in the market for electrical 

and material properties
• Task 4.0 – Final design and construction of low frequency 

electromagnetic tool
• Task 5.0 – Laboratory and field testing of tool
• Task 6.0 -- Inverting the field data to obtain the fracture geometry
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Near-surface field testing (Task 5)
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Subsurface Measurements
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Subsurface Measurements
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Subsurface Measurements
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Subsurface Measurements
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Subsurface Measurements
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Subsurface Measurements
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Near-surface field testing (Task 5)

Uncovering the partially collapsed slot box and installing the 2X10 support beams.
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Results – Subsurface Measurements
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Development Plan

Simulation

Experiment Design

Data Acquisition

Inversion

Physical 
Constraints

Design Field 
Deployable Tool



Tasks

• Task 1.0 -- Project Management Plan 
• Task 2.0 - Development of forward model using proposed tool and 

different fracture geometries
• Task 3.0 - Lab testing of available proppants in the market for electrical 

and material properties
• Task 4.0 – Final design and construction of low frequency 

electromagnetic tool
• Task 5.0 – Laboratory and field testing of tool
• Task 6.0 -- Inverting the field data to obtain the fracture geometry
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Gradient method, or stochastic 
method e.g. simulated annealing.

Inversion Strategy

Update fracture 
parameters



Example

Objective Function 𝐸𝐸 �𝑚𝑚 = ∆𝑈𝑈 − ∆𝑈𝑈𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = �
𝑖𝑖=1

𝑛𝑛

∆𝑈𝑈𝑖𝑖( �𝑚𝑚)−∆𝑈𝑈𝑖𝑖 ( �𝑚𝑚𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) 2

∆𝑈𝑈𝑖𝑖= 𝑈𝑈𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓,𝑖𝑖 − 𝑈𝑈𝑛𝑛𝑛𝑛−𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓,𝑖𝑖 , 𝑖𝑖 is the gap indexVoltage Difference

Model parameters �𝑚𝑚 = [𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟, 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎]

True Model * Initial Guess

r=30 m r=15 m



Inverse Problem
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1. Calculate gradient g at starting point 𝑥𝑥0
2. Move along direction in which the objective function decreases, for ∆𝑥𝑥 (g), to 𝑥𝑥1= 𝑥𝑥0+ ∆𝑥𝑥 (g)
3. If 𝐸𝐸 𝑥𝑥1 < 𝐸𝐸 𝑥𝑥0 , move forward for 1.4 � ∆𝑥𝑥, otherwise move forward for 0.8 � ∆𝑥𝑥, repeat until 𝐸𝐸 increases
4. Go to step 1 until the gradient is small enough

r=27.3 m r=30 m
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Inverse Problem

0 5 10 150.04

0.05

0.06

0.07

0.08

0.09

Fracture Angle (°)

C
os

t F
un

ct
io

n 
(V

)

True Model
𝑟𝑟 = 30 𝑚𝑚,𝛼𝛼 = 15°

Estimated Model
𝑟𝑟 = 27.3 𝑚𝑚,𝛼𝛼 = 5°VS

*

5°

r=27.3 m r=30 m



Current Status
Fully automatic inversion method being developed for the following  
fracture parameters: fracture length, height, conductivity and 
orientation.
Completed
• Parametric inversion of a single fracture from ‘measured voltages’ using 

gradient method and backtracking line search.
Being developed 
• Simulated annealing inverse solver
• Inversion of multiple fractures with multiple excitation 
• Incorporate simulated annealing inverse solver in the loop
• Using genetic algorithms to find a global minimum
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Summary
• A lab prototype tool (transmitters and bucked receivers) has been built and tested in the lab 

and a shallow subsurface test site.
• Excellent agreement is obtained between the model predictions and the lab measurements for 

different T-R configurations.
• The results from the tests suggest that a commercial tri-axial EM tool can be built that has the 

potential to map the geometry of hydraulic fractures.
– The prototype induction tool is shown to differentiate surface area, aspect ratio and dip angle of the 

fracture models used.
– The highest signal levels occur when the primary magnetic field is perpendicular to the plane of the 

target.
– From the principle of reciprocity, the response is the same if the source and receivers are 

interchanged.
– Obtaining the same signal levels for a co-planar configuration is challenging because of wellbore 

constraints on transmitter coils.



Thank you & Questions

Thanks to DOE for funding the project
DE-FE0024271



Resistivity measurements for electrically conductive 
proppant 

Proppant: Experimental Results

Density: 1.14 g/cm3

Porosity: 43.9%
End point: 3.2x10-4

Density: 1.27 g/cm3

Porosity: 37.6%
End point: 2.4x10-4mΩ⋅ mΩ⋅



Fracture Conductivity and Normalized 
Conductivity for Sand and EC-Proppant

FCD = kf*w / Lf*k

FCD = 5 / (500*10-4)

FCD = 100
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Normalized Conductivity for Sand and EC-Proppant
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Cross-Polarized (xz)

2 2
1

1

2

1

,

1.01 mismatch factor

coefficient for perfect bucking

U CU U n
n C

n
C
C

∆ = −

= −

−

𝜎𝜎frac = 333 ⁄S m
𝜎𝜎bg = 0.333 ⁄S m

𝑓𝑓 = 1 kHz
𝑁𝑁𝐼𝐼peak𝐴𝐴TX = 150 Am2

𝑁𝑁RX = 1500 turns
𝐴𝐴RX = 0.01 m2

Co-Planar (xx)

Cross-Polarized (xy)

Co-Axial (zz)

Cross-Polarized (xz)

Bucked Signal, Short Spacing, Fracture: 3m radius, 5mm thickness
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Extensive lab testing and simulations

The total signal comprises two contributions
• Primary signal: pre-fracing, response to formation only
• Secondary signal: change in signal due to fracture
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X: 0.001733

Y: 0.8337

X: 0.0015

Y: 0.005895 X: 0.0025

Y: 0.002388

X: 0.001733

Y: 0.833

Co-Axial (zz)

Fracture detectable 
in I-component

Primary signal dominates total

Reason: 
Quadrature(Q)-component overwhelms in-phase (I)-component 

Fracture undetectable in Q component

𝑡𝑡frac = 5 mm
𝑟𝑟frac = 3 m
𝜎𝜎frac = 333 ⁄S m
𝜎𝜎bg = 0.333 ⁄S m

𝑓𝑓 = 1 kHz
𝑁𝑁𝐼𝐼peak𝐴𝐴TX = 150 Am2

𝑁𝑁RX = 1500 turns
𝐴𝐴RX = 0.01 m2

10% difference required in I-
component to detect fracture 
⇒104 dynamic range in total signal 

(without bucking)

⇒ 14 bit digital representation
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The total signal comprises two contributions
• Primary signal: pre-fracing, response 

to formation only
• Secondary signal: change is signal due 

to fracture
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, signals from two coils
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coefficient for perfect bucking
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n
C
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∆ = − −
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−

𝑡𝑡frac = 5 mm
𝑅𝑅frac = 3 m
𝜎𝜎frac = 333 ⁄S m
𝜎𝜎bg = 0.333 ⁄S m

𝑓𝑓 = 1 kHz
𝑁𝑁𝐼𝐼peak𝐴𝐴TX = 150 Am2

𝑁𝑁RX = 1500 turns
𝐴𝐴RX = 0.01 m2

10% difference 
required in I-
component to 
detect fracture 
⇒102-3 dynamic 

range in total 
signal (bucked)

⇒7-10 bit digital 
representation
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Develop Commercial Tool Specifications (SBIR)
LFEI Tool Conceptual Design
• Consists of 7 sections assembled at wellhead
• First 3 sect. connect rigidly at fixed orientation
• Transmit Control Sub powered by monocable, 

controls electrical impulses sent to TX coils
• Transmit Coil Sub contains long-spacing TX 

coils and short/medium-spacing TX coils
• Short-Spacing Receiver Sub contains short-

spacing bucking and RX coils, Dewar flask 
holding temperature-sensitive RX electronics, 
D&I package, RX batteries

• Medium- and Long-Spacing Receiver Subs
similar to short-spacing receiver sub

• Medium Wired Spacer Bar spaces receiver sub 
so   that medium-spacing RX coils are 20 ft
away from z TX coil

• Long Wired Spacer Bars (3 ea) space receiver 
sub so that long-spacing RX coils are 60 ft away 
from the z TX coil

• Tool Wiring Bus extends through each spacer 
bar and allows communication between 
Transmitter Control Sub and each receiver sub

Rolling Tube
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Pressure
Barrel

Wet Connector
Receptacle
Housing

Rolling
Bulkhead

Fiberglass
Containment
Barrel

Long-Spacing
X and Y
Transmit Coils

Tank
Capacitor
Module

Coil MUX
Module

High-
Temperature
D&I
Package

Wet
Connector
Plug Housing

Transmitter
Module

A A

Transmit Control Sub Transmit Coil Sub
Short-Spacing
Receiver Sub

Long-Spacing
Z Transmit Coil

Short/Medium-
Spacing
X and Y
Transmit Coils

Short-Medium-
Spacing
Z Transmit Coil

Lower Rolling
Bulkhead

Section A-A

Dewar
Flask

Metallic,
Non-mag
Pressure
Barrel

Temperature-
Sensitive
Electronics

D&I
Package

Receiver
Batteries

Short-
Spacing
Bucking
Coil

Short-
Spacing
X, Y, Z
Receive
Coils

Medium
Spacer
Rod

Rod
Connector
Roller

Medium Wired Spacer Rod
Medium-Spacing

Receiver Sub
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Flask

Metallic,
Non-mag
Pressure
Barrel

Temperature-
Sensitive
Electronics

D&I
Package

Receiver
Batteries

Medium-
Spacing
Bucking
Coil

Medium-
Spacing
X, Y, Z
Receive
Coils

Long
Spacer
Rod

Rod
Connector
Roller

Long Wired
Spacer Rod (X3)

Long-Spacing
Receiver Sub

Rolling Nosecone
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Flask

Metallic,
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Pressure
Barrel

Temperature-
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Electronics

D&I
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Receiver
Batteries
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Bucking
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X, Y, Z
Receive
Coils

• Rolling Bulkheads on end of each sub reducing 
sliding friction against tool in horizontal wellbores 70



• The best response of EM tool occurs when the primary magnetic field is 
perpendicular to the plane of the target; it was also shown in the previous 
experimental study:

• The main motivation of the inversion analysis is to provide the same level of 
parameter accuracy (when compared to tri-axial coil system) when only coil 
couples with the strongest signals are used.

Response Function Space

Parameter Co-Axial Co-Planar Cross-Polarized

Surface Area >100 µV >10 µV <1 µV

Aspect Ratio >100 µV >10 µV <1 µV

Dip Angle >100 µV >100 µV >100 µV



2) Directly Solving for the Conductivity

𝑓𝑓 𝐺𝐺 = �
𝑖𝑖

𝑉𝑉𝑖𝑖sca − �𝑉𝑉𝑖𝑖
2

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 = 0

�
𝑖𝑖

𝑉𝑉𝑖𝑖sca
𝜕𝜕𝑉𝑉𝑖𝑖sca

𝜕𝜕𝜕𝜕 = �
𝑖𝑖

�𝑉𝑉𝑖𝑖
𝜕𝜕𝑉𝑉𝑖𝑖sca

𝜕𝜕𝜕𝜕
𝐺𝐺 = 𝐓𝐓T�𝐕𝐕 / 𝐓𝐓T𝐓𝐓

𝐕𝐕𝑖𝑖sca = −𝑗𝑗𝜔𝜔𝜇𝜇o𝑁𝑁rx𝐴𝐴rx𝐊𝐊𝑖𝑖
T 𝐁𝐁\𝐕𝐕𝑖𝑖inc 𝐺𝐺

𝑇𝑇𝑖𝑖 = −𝑗𝑗𝜔𝜔𝜇𝜇o𝑁𝑁rx𝐴𝐴rx𝐊𝐊𝑖𝑖
T 𝐁𝐁\𝐕𝐕𝑖𝑖inc

𝜕𝜕𝑉𝑉𝑖𝑖sca

𝜕𝜕𝜕𝜕
= 𝑇𝑇𝑖𝑖𝑉𝑉𝑖𝑖sca = 𝐺𝐺𝑇𝑇𝑖𝑖

Error minimization (L2 norm) Simplification to the forward algorithm

Given the measured voltage, tool 
parameters and assumed fracture shape, 

what is the conductivity?



Orthogonal Fractures
Case 1: Circular fracture with uniform conductivity

• Radius is 4m; orthogonal and planar fracture

• Conductance is uniform and equal to 0.1 S; thickness is 1 
mm and conductivity is 100 S/m.
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Inverted data perfectly matches input values for the different transmitter-receiver spacing.

Inverted Result



Electromagnetic Scattering
−�𝑛𝑛 × �𝑛𝑛 × 𝐄𝐄sca −

𝐉𝐉
𝜎𝜎𝜎𝜎

= �𝑛𝑛 × �𝑛𝑛 × 𝐄𝐄inc 𝐫𝐫 𝐫𝐫 ϵ 𝑆𝑆

𝐉𝐉 𝐫𝐫 ≅ �
𝑛𝑛=1

𝑁𝑁

𝐼𝐼𝑛𝑛𝚲𝚲𝑛𝑛 𝐫𝐫

𝐙𝐙𝐙𝐙 = 𝐕𝐕inc

and

• Once unknown coefficient vector is found, scattered fields are calculated 
for two observation points.

• This procedure is repeated for each tool position and only incident field 
vector is regenerated.
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