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Objectives

e To build and test a downhole fracture diagnostic tool that can be
used to estimate the orientation and length of the ‘propped’
fracture (not the created fracture)

* To map the distribution of proppant in the fracture.
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Technical Approach

* The project has the following components:

* Develop a forward model for the proposed EM technology taking into
account real geological and reservoir constraints.

e Source and test proppants in the laboratory for electrical and material
properties for their suitability in deployment in the field.

* Design, build and field test a low frequency electromagnetic tool.

* Invert the field data to estimate the propped fracture geometry, and
present a stimulated rock volume map.
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Project Tasks

e Task 1.0 - Project Management Plan

e Task 2.0 - Development of forward model using proposed tool and
different fracture geometries

e Task 3.0 - Lab testing of selected proppants for electrical and material
properties

e Task 4.0 — Design and construction of a low frequency electromagnetic
tool

e Task 5.0 — Laboratory and testing of tool in a shallow test site.

e Task 6.0 - Inverting the field data to obtain the fracture geometry
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Electrically Conductive Proppant
Resistivity and Permeability
Lab Measurements

Peng Zhang
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Mukul Sharma
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Experimental Method for Resistivity Measurements

. ﬁ\ Il(lll-electrode method was used to do the measurements in a core
older

* Alternating current (AC) was applied on the current-
carrymF electrodes, while the voltage was measured on
the voltage-sensing electrodes.

e Confining pressure can be applied. Saturation fluid could be tuned.
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Experimental Method for Resistivity Measurements

0% sand + 100% coke

25% sand + 75% coke

50% sand + 50% coke

75% sand + 25% coke

The ratio is based on mass.
Before measurement After measurement

Size:40-70 mesh & 70-100 mesh
Coke Density: ~2 g/cm?3
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Electrical Resistivity: 40/70 mesh
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Resistivity (ohm.m)
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Electrical Resistivity: 70/100 mesh
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All with sea water

212x107*Q-m

0% sand @4600 psi
264x107*Q-m
(o)
25% sand @5000 psi
—4 .
50% sand 573 X107*Q-m

@5000 psi
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Electrical Resistivity: 70/100 mesh
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75% sand (sea water) 3.18 x 1073 Q - m @5000 psi
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Experimental Method for Fracture
Conductivity Measurements

A Berea sandstone core of 1”” diameter by 8" length was prepared with a fracture width of Imm.

The core was placed inside a Hassler sleeve core holder and evacuated to remove trapped air.

Confining closure stress was applied for 24 hours, after which 3% brine solution was pumped through the
core at a range of constant flow rates.

For each closure stress applied, the pressure drop across the core was measured and used to calculate the
fracture conductivity using Darcy’s Law.

This procedure was repeated for incremental closure stresses from 1000 — 8000 psi.
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Fracture Conductivity and Normalized Conductivity
Sand vs Coke: 40/70 mesh
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Productivity Index: Fractured Vertical Wells
Ref: Friehauf and Sharma (2009)
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Fracture Conductivity and Normalized Conductivity
Sand vs Coke 70/100 mesh
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Summary of Lab Measurements

* The electric resistivity of the PC, under confining stress, was
measured to be in the range of 2 x 104 Q - m

e Size does not affect the electrical resistivity but does affect the
permeability.

* It is feasible to use mixtures of sand and PC if fracture conductivity is
a concern (large in-situ stresses).

 Both resistivity and permeability increase with increasing mass
percentage of sand at a given confining pressure.

* Brine has a minor effect on the measured resistivity because it is
usually much more resistive (~0.2 () - m) than petroleum coke.
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Tasks

e Task 1.0 -- Project Management Plan

e Task 2.0 - Development of forward model using proposed tool and
different fracture geometries

e Task 3.0 - Lab testing of available proppants in the market for electrical
and material properties

e Task 4.0 — Final design and construction of low frequency
electromagnetic tool

e Task 5.0 — Laboratory and field testing of tool
e Task 6.0 -- Inverting the field data to obtain the fracture geometry
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Numerical Simulation
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- Discretize geometry
expand unknowns

% J0B)  Br)= ST, (1)

&(r) = g, (r)+ S (r)/ Jw
J (r)—%l
2aaBHIAB

" o<l <17, 2O

- Galerkin testing

* Simples

coil mode

* referen

§ D(r)=4,(rE(r) VreV
D(r) +L (joyD, r) E™(r)

&y(r) > i .
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1 rhs rhs

More details on the UT Austin EM forward-modeling software:
[3] P. Zhang, J. Shiriyev, Y. Brick, J. Massey, C. Torres-Verdin, A. E. Yilmaz, and M. Sharma, “Fracture diagnostics using a low frequency electromagnetic induction

method,” in Proc. ARMA, June 2016
[3] A. Menshov, Y. Brick, C. Torres-Verdin, and A. E. Yilmaz, “Recent progress in rigorous algorithms for the fast solution of 3-D EM frequency-domain integral-equations,”

to appear in Proc. 6th Int. Symp. 3-D Electromagnetics, Mar. 2017. 19
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EM Induction Logging Tool
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EM Induction Logging Tool
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Tasks

e Task 1.0 -- Project Management Plan

e Task 2.0 - Development of forward model using proposed tool and
different fracture geometries

e Task 3.0 - Lab testing of available proppants in the market for electrical
and material properties

e Task 4.0 — Final design and construction of low frequency
electromagnetic tool

e Task 5.0 — Laboratory and field testing of tool
e Task 6.0 -- Inverting the field data to obtain the fracture geometry
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Tool Construction and Lab Testing
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Lab test fixture diagram for LFIE tool

Co-planar coil after construction
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Comparison of Lab Results with Simulations

36
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Comparison of Lab Results with Simulations

| — Industrial Aluminum Foil
Conductivity at 20°C: 33.4 — 35.8 MS/m
Thickness: 25.4 + 10% pm
— Fracture Holder: Plexiglass acrylic sheet

37
Lab test fixture for LFEI tool
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Comparison of Lab Results with Simulations
Pre-amp PCB

Power )
Amp Tx Coll Rx1
Gy DC Source
O-scope Q
SR830 DSP

Lock-in-Amplifier

Tektronix
MSO-scope 2024

SR830 DSP
Lock-in-Amplifier
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Lab Measurements

co-axial signals for 10 cm radius fracture model
4.1 ; ; ; ; ;

409 L

Tx

AAANAAA

Input Current, [A]

IITT [I TTTI[TTTTIT I

- All coils have been tested to verify the given properties. M uw H“m“HlJmUH HTTTMTT

4.02 J_J-J-J_ JJ_J
* A single coil configuration is tested at a time H |
« Transmitter coil currents are measured during tests and o ‘
results are normalized with respect to currents. 3 A T
* At every sampling point data have been recorded for a \
. . . . . 0% xxxxxxki;t;( xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 3
minute at least and signal to noise ratio is shown to be Coviat T
eviation
strong.

« Signals are referenced with respect to voltage around
the transmitter coil. Reference phase is used to rotate
the output channels to get in-phase (real) and | |
quadrature (imaginary) components of received signals. Y e

Received signals, [1V]
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Fracture Lab / Subsurface Models

— Industrial Aluminum Foil a) Circular Fractures
Conductivity at 20°C is 33.4 — 35.8 MS/m
Thickness is 25.4 + 10% pum

(also verified with micrometer measurement)

— Experiment setup

Plexiglass, PVC pipes, nylon rod and Lexan

— Comparison to real size hydraulic fractures

b) Elliptical Fractures c) Rotated Fractures

d) Subsurface Model

0°,21°,33°,
47° and 61°

30 cm

21.8 cm 4>

40 cm y‘_I
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Comparison of Lab Results with Simulations
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3000 [

Magnitude of differential signal, [uV]
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Results — Lab Measurements

co-axial [Tx(z) Rx(2)]
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20 cm i ]
180 " 0
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10 cm
h R - lDistance, [m] | | | | h
Parameter Co-Axial | Co-Planar | Cross-Polarized
Surface Area | >100 pVv >10 v <1 pv
Aspect Ratio | >100 Vv >10 pv <1 v
Dip Angle >100 pv >100 pVv >100 puv
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Results — Lab Measurements

co-axial [Tx(z) Rx(2)]
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Parameter Co-Axial | Co-Planar | Cross-Polarized
Surface Area | >100 pVv >10 v <1 pv
Aspect Ratio | >100 pV >10 pv <1 v
Dip Angle >100 pv >100 pVv >100 puv
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Results — Lab Measurements

co-axial [Tx(z) Rx(2)] cross-polarized [Tx(y) Rx(2)]
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Parameter | Co-Axial | Co-Planar | Cross-Polarized
Surface Area | >100 pVv >10 v <1 pv
Aspect Ratio | >100 Vv >10 puv <1 v

Dip Angle >100 pVv >100 pVv >100 pv
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Tasks

e Task 1.0 -- Project Management Plan

e Task 2.0 - Development of forward model using proposed tool and
different fracture geometries

e Task 3.0 - Lab testing of available proppants in the market for electrical
and material properties

e Task 4.0 — Final design and construction of low frequency
electromagnetic tool

e Task 5.0 — Laboratory and field testing of tool
e Task 6.0 -- Inverting the field data to obtain the fracture geometry
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Near-surface field testing (Task 5)
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Subsurface Measurements
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Subsurface Measurements
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Subsurface Measurements
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Subsurface Measurements

Air

Formation

.............. (| Rx20 oRx1

Borehole

<

AR
i

conductive target

8/7/2017

FRACTURE DIAGNOSTICS USING EM METHODS 50



Subsurface Measurements
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Subsurface Measurements
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Near-surface field testing (Task 5)

A L

Uncovering the partially collapsed slot box and installing the 2X10 support beams.
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Magnitude of differential signal, [uV]

Results — Subsurface Measurements
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Tasks

e Task 1.0 -- Project Management Plan

e Task 2.0 - Development of forward model using proposed tool and
different fracture geometries

e Task 3.0 - Lab testing of available proppants in the market for electrical
and material properties

e Task 4.0 — Final design and construction of low frequency
electromagnetic tool

e Task 5.0 — Laboratory and field testing of tool
e Task 6.0 -- Inverting the field data to obtain the fracture geometry
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Initial Guess
{Fra-::tu re conductivity, |

size, angle) | nve rSion Strategy

Update fracture
Generate Mesh parameters

Define Conductivity
(casing, insulator
fracture, etc.)

|

Forward Solver

!

‘ Sample Results Inverse Solver

Print Fracture
Parameters

Objective Function
Sufficiently Small?

Gradient method, or stochastic
method e.g. simulated annealing.
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Example

r=30 m r=15m
R | -
Trueodel * Initial Guess

Objective Function  E@@) = AU — AUpell = | ) [AU; () —AU; (igrye)]?
=1

Voltage Difference AU;= Ugraci — Uno—frac,i » L is the gap index

Model parameters m = [radius, angle]
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Inverse Problem

Gradient Descent + Backtracking Line Search

0.25

NS

o
N

N

7/
/

0.15

Cost Function (V)

N ~

~ |

O
H

0.0i

b

N

4

16 18 20 22 24 26 28 30 32 |
Fracture Radius (m)

Calculate gradient g at starting point x

Move along direction in which the objective function decreases, for Ax (g), to x;= xo+ Ax (g)

If E(x;) < E(x,), move forward for 1.4 - Ax, otherwise move forward for 0.8 - Ax, repeat until E increases
Go to step 1 until the gradient is small enough
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Inverse Problem
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o o
10X
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o
o
o))

Cost Function (V)

o
o
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True Model Estimated Model

r=30m,a = 15° VS r=273m,a =5°
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Current Status

Fully automatic inversion method being developed for the following
fracture parameters: fracture length, height, conductivity and
orientation.

Completed

« Parametric inversion of a single fracture from ‘measured voltages’ using
gradient method and backtracking line search.

Being developed

e Simulated annealing inverse solver

 Inversion of multiple fractures with multiple excitation
 Incorporate simulated annealing inverse solver in the loop
* Using genetic algorithms to find a global minimum



Summary

* A lab prototype tool (transmitters and bucked receivers) has been built and tested in the lab
and a shallow subsurface test site.

« Excellent agreement is obtained between the model predictions and the lab measurements for
different T-R configurations.

* The results from the tests suggest that a commercial tri-axial EM tool can be built that has the
potential to map the geometry of hydraulic fractures.

— The prototype induction tool is shown to differentiate surface area, aspect ratio and dip angle of the
fracture models used.

— The highest signal levels occur when the primary magnetic field is perpendicular to the plane of the
target.

— From the principle of reciprocity, the response is the same if the source and receivers are
iInterchanged.

— QObtaining the same signal levels for a co-planar configuration is challenging because of wellbore
constraints on transmitter coils.

8/7/2017 FRACTURE DIAGNOSTICS USING EM METHODS 62
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Thank you & Questions

Thanks to DOE for funding the project
DE-FE0024271
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Proppant: Experimental Results
Resistivity measurements for electrically conductive
proppant
6.0E-03 & 1.0E-03
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End point: 3.2x104 Q-m End point: 2.4x104 Q-m
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Fracture Conductivity and Normalized
Conductivity for Sand and EC-Proppant
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Normalized Conductivity for Sand and EC-Proppant
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Short Spacing, Fracture: 3m radius, 5mm thickness
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Extensive lab testing and simulations
. . . . tirac = S MM
The total signal comprises two contributions P,
. . . . frac o
* Primary signal: pre-fracing, response to formation only Ofrac = 333S/m
e Secondary signal: change in signal due to fracture Tbg = 0.3335/m
f =1kHz
NIP** 41y = 150 Am?
Co- Axnal (zz) Primary signal dominates total
o~ ary signal dominates tota Ngrx = 1500 turns
2 \/\/ 53333333 v e Arx = 0.01 m?
B o

| comp.[V]

Q comp, [\

X:0.0015

Y: 0.005895 X:0.0025
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Fracture detectable 10% difference required in |-

in I-component component to detect fracture

—10% dynamic range in total signal

5 (without bucking)

= 14 bit digital representation
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\1 Y:0.833
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Quadrature(Q)-component overwhelms in-phase (I)-component
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5
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Comparison of Lab Results with Simulations

The total signal comprises two contributions

e Primary signal: pre-fracing, response
to formation only

e Secondary signal: change is signal due

to fracture

Engineering
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Develop Commercial Tool Specifications (SBIR)

LFEI Tool Conceptual Design
* Consists of 7 sections assembled at wellhead
* First 3 sect. connect rigidly at fixed orientation
powered by monocable,
controls electrical impulses sent to TX coils
contains long-spacing TX
coils and short/medium-spacing TX coils
contains short-
spacing bucking and RX coils, Dewar flask
holding temperature-sensitive RX electronics,
D&l package, RX batteries

similar to short-spacing receiver sub
spaces receiver sub
so that medium-spacing RX coils are 20 ft
away from z TX coil
space receiver
sub so that long-spacing RX coils are 60 ft away

Transmit Control Sub

Rolling Tube
Crossover

Metallic
(Non-Magnetic)
Pressure —_|
Barrel

High- —
Temperature

D&l
Package

1

Transmitter
Module

Tank
Capacitor
Module

Coil MUX —]
Module

Lower Rolling

Bulkhead \

Wet ——

Connector
Plug Housing

Wet Connector

Receptacle ™~

Housing
Rolling /\

A
Bulkhead

Transmit Coil Sub

Short-Spacing
Receiver Sub

Section A-A

Fiberglass Short-
Containment ™ Spacing
Barrel " ' Bucking \
Coil
Long-Spacing ——]
XandY ——
Transmit Coils || = Short-
— Spacing
— X, Y, Z
— Receive
— Coils
Long-Spacing —
Z Transmit Coll —
AN Dewar
ShortMedium- Flask
Spacing — "llll'
XandY Metallic,
Transmit Coils —— Non-mag
—— Pressure
— Barrel
Short-Medium- === Temperature-
Spacing ——] Sensitive
Z Transmit Coil = Electronics
D&l
Package
Receiver
Batteries

i

i
O

B

|

from the z TX coil

extends through each spacer
bar and allows communication between
Transmitter Control Sub and each receiver sub

on end of each sub reducing
sliding friction against tool in horizontal wellbores

Medium Wired Spacer Rod

Rod ¥
Connector €

Roller

Medium
Spacer
Rod

Medium-Spacing
Receiver Sub

Medium- .
Spacing
Bucking \

Coil

/'

Medium-
Spacing
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Response Function Space

* The best response of EM tool occurs when the primary magnetic field is
perpendicular to the plane of the target; it was also shown in the previous

experimental study:

Parameter | Co-Axial | Co-Planar | Cross-Polarized
Surface Area | >100 pv >10 pv <1l puv
Aspect Ratio | >100 pv >10 pv <1 uv

Dip Angle >100 pVv >100 pv >100 pVv

 The main motivation of the inversion analysis is to provide the same level of
parameter accuracy (when compared to tri-axial coil system) when only coil

couples with the strongest signals are used.
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2) Directly Solving for the Conductivity

Simplification to the forward algorithm

Error minimization (L, norm)

F6) =) (Ve - 7h)’
l

of
oG

aV_sca _ aV.SCEl
EVf“‘ alG - zVi alG

i i

0

Vl_sca — _jw:uoerArXK’ir lg\‘_/llnc] G

T;

aV.SCEl
l

Vi =6, —o =T

= —jwu,N rxArXE'ir lg\‘_/iinc]

G = [T7V]/[T"T]

!

Given the measured voltage, tool
parameters and assumed fracture shape,

what is the conductivity?

E8 | The University of Texas at Austin
Petroleum and Geosystems
Engineering
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Orthogonal Fractures

Case 1: Circular fracture with uniform conductivity

e Radius is 4m; orthogonal and planar fracture

* Conductance is uniform and equal to 0.1 S; thickness is 1
mm and conductivity is 100 S/m.

0.7 T T T T T T T T 0.7

T T T T T T T T 0.7 T T T T T
os | — Rx2 ] o | — Rx4 o | — Rx8
05 | — RXl 4 05 | | RX3 4 05 |
g 04 | g 04 g 04
9, 2 2
3 ) )
8 03 I d R I E 0.3 E 0.3
g nverte esult g7 g
=) =} =}
e} =] ©
S 02 S o0z g o2
o I S °r g ozt
01 L =g g 4 4 s s+ s o o 4. . . 01 b 01 b
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0 2 4 6 8 10 12 14 16 18 0 2 4 6 8 10 12 14 16 18 0 2 4 6 8 10 12 14 16 18
Radius of simulated fracture, [m] Radius of simulated fracture, [m] Radius of simulated fracture, [m]

Inverted data perfectly matches input values for the different transmitter-receiver spacing.
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Electromagnetic Scattering
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 Once unknown coefficient vector is found, scattered fields are calculated

for two observation points.
e This procedure is repeated for each tool position and only incident field

vector is regenerated.
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