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 Develop a Geomechanical Screening Tool to Identify Risk
 Experimental & Modeling Approach for Secure CO2 Storage

Benefit to the Program
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 Develop a screening tool for improved understanding of
geomechanical effects associated with CO2 injection

 Derive a workflow from experimental and computational
studies conducted for specific CO2 sites, e.g. Frio, Cranfield

Project Overview: Goals and Objectives

Task 1 Project management (M.F.W.–lead)

Task 2  Conduct laboratory experiments for hydro-mechanical rock properties (N.E.–lead)

Task 3  Upscale to bridge from laboratory to field scales (M.F.W.–lead)

Task 4  Extend simulator capability to model CO2 storage field scale studies (M.D. and M.F.W.-lead)

Task 5  Perform parameter estimation & uncertainty quantification (M.F.W.–lead, S.S.–consultant)

Task 6  Integrate results to generate geomechanical screening tool / workflow (M.F.W.–lead, S.S.–consultant)
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Task 2. 
Conduct Laboratory Experiments for 
Petrophysical & Hydro-mechanical 
Rock Properties
(N. Espinoza–lead)

Technical Status
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Task 2: Laboratory Experiments

Measure mechanical properties

Collect other existing data 
(seismic, well logs, etc.)

Objectives Complete modeling, perform reservoir simulations, and analyze geological 
uncertainty for two CO2 storage field studies (Frio, TX & Cranfield, MS) 

Site 1: Cranfield, Mississippi

Site 2: Frio pilot study, Texas

Measure other reservoir rock properties and 
corroborate with field data

(Source: DOE Cranfield Fact Sheet)

Task 2
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Large Axisymmetric Triaxial Frame 
Connected to ISCO Pumps for Fluid Injection

• Experimental setup

Downstream 
cylinder

ISCO pump

Pressure 
intensifier

Upstream 
cylinder

Control panel
Upstream and 
downstream 

pipes

Pressure booster

1 Sample mounted on the loading 
frame 3 Cylinders & pumps for flow system 

connected to the triaxial cell2 Data acquisition

Task 2
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Mechanical properties of Cranfield Tuscaloosa sandstones
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History match of Frio Pilot test using laboratory 
geomechanical properties in IPARS

𝐶𝐶𝑝𝑝 = 1
𝑉𝑉𝑝𝑝

Δ𝑉𝑉𝑝𝑝
Δ𝑃𝑃𝑝𝑝

= Δ𝜀𝜀𝑣𝑣𝑣𝑣𝑣𝑣
Δ𝑃𝑃𝑝𝑝

= 6.3·10-6 psi-1

Accurate measurements of 
rock compressibility by 
laboratory experiment under 
in-situ condition

Reservoir properties and 
geomechanical properties 
assimilated into reservoir 
model

History match results

Task 4
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Storage capacity without causing geomechanical events

Cumulative amount of CO2 injection without causing fault reactivation (red line) or
hydraulic fracture at the injector (blue line) as a function of injection rate assuming
closed reservoir compartments. Green triangles show actual cumulative CO2 injection
volume and injection rates attained in the field during the first Frio pilot test.

Task 4
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Task 3. 
Upscale by Completing Bridge 
from Laboratory to Field Scales
(M.F. Wheeler–lead)

Technical Status
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Task 3: Bridge from Laboratory to Field

Development of homogenization schemes 
combining numerical and analytical 
approaches

Particular emphasis will be put on including 
natural fractures in effective properties and 
localization effects

Obtain field scale constitutive parameters to 
perform coupled fluid flow and 
geomechanical numerical simulation
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

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/

Objectives Upscale measured rock properties (fluid flow & geomechanics) to scale 
relevant to field processes

Task 3
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Adaptive Homogenization for Upscaling

• Problems Statement
– Computationally prohibitive to incorporate multiscale property

data from well-logs, geological models and parameter estimation
• Objective

– A computationally efficient general upscaling framework
– Extension to general non-linear multicomponent, multiphase flow

problems
• Strategy

– Adaptive mesh refinement for accuracy with local upscaling for
computational efficiency

• Novelty
– Preserves accuracy at the saturation/concentration front
– Can incorporate more complex fluid flow and phase behavior

descriptions with relative ease

13/53
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Benchmark Homogeneous Case

• Tracer slug injection and transport in a homogeneous medium
• Verify adaptive mesh refinement
• Three comparison

– Fine scale
– Coarse or homogenized
– Adaptive with fine and coarse

• Space (Adaptive 2) and time gradient (Adaptive 2) as adaptivity
criteria

14/53
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Tracer Transport: Heterogeneous Porous Media

15/53

• SPE10 comparative project dataset: layer 37
– Highly channelized permeability distribution

• Tracer slug injection and transport in a heterogeneous medium
• Computational speedup: 4X with adaptive homogenization
• Comparison

– Concentration profiles
– Tracer concentration production history

Task 3



Tracer Transport: Heterogeneous Porous Media

16/53

• Adaptivity criteria
– Space gradient based criteria performs better

• Comparison
– Concentration profiles do not show substantial differences
– Tracer concentration production history shows the differences

Task 3



Multiphase Flow: Heterogeneous Porous Media

• Multiphase flow
– Two-phase oil/water, air/water
– Three-phase black oil

• Computational speedup: 3.5X with adaptive homogenization
• SPE10 comparative project dataset: layer 20

– Gaussian permeability distribution

17/53
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Multiphase Flow: Heterogeneous Porous Media
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Task 3



Task 4. 
Simulator Development and Modeling CO2
Storage Field Scale Studies
(M. Wheeler–lead)

Technical Status
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Task 4: Simulator Development

Develop computational methods for coupled 
processes based on multiscale discretization 
for flow, geomechanics & hysteresis

Development of efficient 
solvers & pre-conditioners 

Model CO2 storage field sites and perform 
simulations

Objectives Complete simulator development with numerical schemes for coupled 
processes

Task 4
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Cranfiled Numerical Model
X-Permeability

  Model Type Compositional model
  Reservoir size 9400×8800×80 (ft)
  Number of grid blocks 188×176×20
  Initial water saturation 1.0
  Initial pressure 4650 (psi)
  Initial temperature 257 (oF)
  Salinity 150,000 (ppm)

Numerical Model of Cranfield field test
CO2 Brine

  Critical temperature (oR) 547.56 1120.23
  Critical pressure (psia) 1070.4 3540.9
  Compressibility factor 0.255 0.2
  Acentric factor 0.224 0.244
  Molecular weight (g/g mol) 44.01 18.01
  Volume-shift -0.19 0.065
  Binary interaction coefficients 0.09 0.09
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Injection Scenarios
• Continuous CO2 injection

• Water Alternating Gas (WAG)

• Surfactant Alternating Gas (SAG-foam)

Task 4
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Simulation Results (CO2 Saturation)
Continuous CO2 Injection

Water Alternating Gas (WAG) – without Hysteresis Modeling

Top view

Top view

Bottom view

Bottom view
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Simulation Results (CO2 Saturation)-Cont’d

Surfactant Alternating Gas (SAG) – Foam

Top view

Top view

Bottom view

Bottom view

Water Alternating Gas (WAG) – with Hysteresis Modeling

Task 4
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Summary of Results (Field Statistics)

• In continuous CO2 injection, 34% of the total injected CO2 does NOT store 
inside the selected sector model and is produced through the boundaries.

• CO2 lost from reservoir boundaries decreases from 34% to 19% and 10.1% 
using WAG and SAG processes, respectively. 

Task 4



Geomechanical Effects of CO2 Injection 
with a Poro-plasticity Model

Fluid Flow

Stress Equilibrium

Hooke’s law Druker-Prager Yield Surface

Strain-Displacement Relation

Plastic Strain Evolution

Yield and Flow Functions

Task 4
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Poroelastoplastic Deformation at Cranfield
Task 4

27/53

With plasticity, we have observed 
permanent deformations after 

loading/unloading.
Compared discretely meshed-

in well versus Peaceman.

Flow + Elasticity Flow + Plasticity

Ran Cranfield simulations to compare results with 
compositional flow, linear elasticity, and plasticity models.

History Matching Results using 
various physical models.

CO2 Concentration with Displacements



Task 5. 
Parameter Estimation & 
Uncertainty Quantification
(M.F.W.–lead, S. Srinivasan–consultant)

Technical Status
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Objectives Update input parameters for numerical models, e.g. simulated responses 
match observations

Task 5: Uncertainty Quantification

A Priori Model History Matching A Posteriori Model

Task 5
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History Matching Coupled with 
Level-Set Parameterization, MFDFrac, and EnKF

1 Initialization
• Generate initial fractured realizations

2 Level-Set Parameterization
• Convert non-Gaussian 

to Gaussian parameters

• Φ: level set at the node

• r: fracture length

• θ: fracture orientation

3 Simulation using MFDFrac
• Mimetic Difference Approach 

4 Inverse Modeling using EnKF
• EnKF for updating Gaussian parameters

Ensemble mean of 
initial fracture realizations

Ensemble mean of 
final fracture realizations

Internal Fracture 
Boundaries

FlowIntersecting 
Fractures

Realization #1 Realization #100…

Task 5
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1 Lab-scale Sandpack 3 Prior Models

2 Observed Lab Data 4 Posterior Models (History-matched)

History Matching Coupled with 
Level-Set Parameterization, MFDFrac, and EnKF

Task 5

(Jing et al., 2016)
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History Matching of a Fractured Reservoir
: at the Well KB-503 in the In Salah CCS Field

Vertical Displacement Global-Objective Optimization Multi-Objective Optimization

• Observed data = InSAR
(vertical displacement     
resulting from CO2 injection)

• Simulator: CMG-GEM

• After history matching, high
permeability regions were
obtained near all three CO2

injection wells.

• After 4-objective history
matching, permeability values
were lowered near KB-501
and KB-503 wells .

Task 5

(Nwachukwu et al., 2016; Min et al., 2016)
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KB-502
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producer
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Injector
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Oil
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Injector
KB-503

Oil
producer
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History Matching of a Fractured Reservoir
: at the Well KB-503 in the In Salah CCS Field

Vertical Displacement Global-Objective Optimization Multi-Objective Optimization

• InSAR: satellite measured 
vertical displacement 
resulting from CO2 injection

• Simulator: CMG-GEM

• High permeability near the 
KB-503 well yielded 
underestimated BHP 
compared to observed BHP.

• Low permeability near the 
KB-503 well improved the 
matching quality of BHP.

Task 5

(Nwachukwu et al., 2016; Min et al., 2016)
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Task 6. 
Integrate Results to Generate Geomechanical 
Screening Tool/Workflow
(M.F.W.–lead)

Technical Status
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Task 6: Geomechanical Screening Tool

Objectives
Derive a workflow based on project tasks performed - experimental and 
numerical investigation of geomechanical processes, effects, & conditions 
related to CO2 storage and analysis of two CO2 storage field case studies

Geomechanical 
laboratory 

Measurements
(Task 2)

Scale-up to 
field scale 
Variability
(Task 3)

Coupled 
hydro-chemical-

mechanical modeling
(Task 4)

Calibration to field scale 
observations

(Tasks 2, 3, 4, 5)

Parameter estimation &
uncertainty quantification

(Task 5)

Sensitivity analysis & risk assessment

Task 6
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Development of a Multiple Model Optimizer
: IRMS (Integrated Reservoir Management S/W)

All products of the tasks are being integrated with CSM’s IPARS for Subsurface Modeling

OS Algorithm Simulator Run Storage

• Global-objective        

genetic 

algorithm

• Global-objective       

evolution 

strategy

• Multi-objective            

genetic 

algorithm

• Multi-objective           

evolution 

strategy

IPARS
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Road Ahead

• CO2 storage volume increased by 15% and 24% of total CO2
injection volume during WAG and SAG processes, respectively. 

• It is essential to model relative permeability hysteresis during cyclic 
processes (WAG, SAG here) to capture the physics of the problem 
more accurately. 

• During SAG process, foam is created at the high permeability 
streaks and upper layers with higher CO2 flow rates and diverts the 
CO2 flow into low permeability regions and bottom layers leading to 
more efficient areal and vertical sweep efficiencies.

• Optimization of WAG and SAG processes using advanced 
optimization toolbox 
– Genetic Algorithm (GA)
– Evolutionary Strategy (ES)
– Ensemble Kalman Filter (EnKF)

Task 4



Accomplishments to Date
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• Task 2
– Hydro-mechanical rock properties for Frio and Cranfield rocks
– History matching for Frio field combining laboratory experiments 

and field data
• Task 3

– Handle multiscale data: well-logs, geological models, and 
laboratory experiments

– General upscaling framework using adaptive homogenization
• Task 4

– Multiphase hysteretic relative permeability model for capillary 
trapping

– Poroelastoplastic model for reservoir deformation
– CO2 foam injection for high storage capacity

• Task 5
– History matching for Cranfield
– General multi-objective optimization framework



Synergy Opportunities

Assistance in 
Decision Making

Interdisciplinary 
Collaboration

Training & 
Education

• Assist in selection of 
suitable sites for 
safe CO2 storage 
using generalized 
S/Ws based on a 
posteriori knowledge

• Enhance 
understanding of the 
effects of CO2
migration on open 
and closed faults 
and fractures 

Contribution to Identifying Geological Risk 

for Secure CO2 Storage!

• Support training and 
education of 
students who will 
take part in an 
interdisciplinary work, 
e.g. IPARS tutorial
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Gantt Chart
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