Development of Geomechanical Screening Tools to Identify Risk: An Experimental and Modeling Approach for Secure CO₂ Storage

DE-FE0023314

Mary F. Wheeler

The University of Texas at Austin

U.S. Department of Energy National Energy Technology Laboratory Mastering the Subsurface Through Technology, Innovation and Collaboration: Carbon Storage and Oil and Natural Gas Technologies Review Meeting

August 2-5, 2017

Presentation Outline

Develop a Geomechanical Screening Tool to Identify Risk

✓ Experimental & Modeling Approach for Secure CO₂ Storage

Project Overview: Goals and Objectives

Develop a screening tool for improved understanding of geomechanical effects associated with CO₂ injection

□ Derive a workflow from experimental and computational studies conducted for specific CO₂ sites, e.g. Frio, Cranfield

Task 1 Project management (M.F.W.-lead)

Task 2 Conduct laboratory experiments for hydro-mechanical rock properties (N.E.-lead)

Task 3 Upscale to bridge from laboratory to field scales (M.F.W.–lead)

Task 4 Extend simulator capability to model CO₂ storage field scale studies (M.D. and M.F.W.-lead)

Task 5 Perform parameter estimation & uncertainty quantification (M.F.W.-lead, S.S.-consultant)

Task 6 Integrate results to generate geomechanical screening tool / workflow (M.F.W.-lead, S.S.-consultant)

Technical Status

Task 2. Conduct Laboratory Experiments for Petrophysical & Hydro-mechanical Rock Properties (N. Espinoza–lead)

Task 2: Laboratory Experiments

Site 2: Frio pilot study, Texas

Large Axisymmetric Triaxial Frame Connected to ISCO Pumps for Fluid Injection

Experimental setup

Sample mounted on the loading frame

2 Data acquisition

Cylinders & pumps for flow system connected to the triaxial cell

pipes

Task 2

Mechanical properties of Cranfield Tuscaloosa sandstones

History match of Frio Pilot test using laboratory geomechanical properties in IPARS

Storage capacity without causing geomechanical events

Cumulative amount of CO_2 injection without causing fault reactivation (red line) or hydraulic fracture at the injector (blue line) as a function of injection rate assuming closed reservoir compartments. Green triangles show actual cumulative CO_2 injection volume and injection rates attained in the field during the first Frio pilot test.

Technical Status

Task 3. Upscale by Completing Bridge from Laboratory to Field Scales (M.F. Wheeler–lead)

Task 3: Bridge from Laboratory to Field

Objectives	Upscale measured rock properties (f relevant to field processes	luid flow & geomechanics) to scale
→ Devel comb appro	opment of homogenization schemes ining numerical and analytical aches	$\int \frac{\sigma_{33}}{\sigma_{22}} = C = C = -\alpha p_c I$
→ Partic natur localiz	cular emphasis will be put on including al fractures in effective properties and zation effects	$\sigma_{11} \qquad $
Obtain perfor geom	n field scale constitutive parameters to m coupled fluid flow and echanical numerical simulation	

(

TEXAS

Adaptive Homogenization for Upscaling

- Problems Statement
 - Computationally prohibitive to incorporate multiscale property data from well-logs, geological models and parameter estimation
- Objective
 - A computationally efficient general upscaling framework
 - Extension to general non-linear multicomponent, multiphase flow problems
- Strategy
 - Adaptive mesh refinement for accuracy with local upscaling for computational efficiency
- Novelty
 - Preserves accuracy at the saturation/concentration front
 - Can incorporate more complex fluid flow and phase behavior descriptions with relative ease

Benchmark Homogeneous Case

- Tracer slug injection and transport in a homogeneous medium
- Verify adaptive mesh refinement
- Three comparison
 - Fine scale
 - Coarse or homogenized
 - Adaptive with fine and coarse
- Space (Adaptive 2) and time gradient (Adaptive 2) as adaptivity criteria

Tracer Transport: Heterogeneous Porous Media

- SPE10 comparative project dataset: layer 37
 - Highly channelized permeability distribution
- Tracer slug injection and transport in a heterogeneous medium
- Computational speedup: 4X with adaptive homogenization
- Comparison
 - Concentration profiles
 - Tracer concentration production history

Tracer Transport: Heterogeneous Porous Media

- Adaptivity criteria
 - Space gradient based criteria performs better
- Comparison
 - Concentration profiles do not show substantial differences
 - Tracer concentration production history shows the differences

Multiphase Flow: Heterogeneous Porous Media

- Multiphase flow
 - Two-phase oil/water, air/water
 - Three-phase black oil
- Computational speedup: 3.5X with adaptive homogenization
- SPE10 comparative project dataset: layer 20
 - Gaussian permeability distribution

Multiphase Flow: Heterogeneous Porous Media

Technical Status

Task 4. Simulator Development and Modeling CO₂ Storage Field Scale Studies (M. Wheeler–lead)

Task 4: Simulator Development

Task 4

Cranfiled Numerical Model

Injection Scenarios

• Continuous CO₂ injection

• Water Alternating Gas (WAG)

| 4 yrs CO ₂ | 1 yr
water | 3 yrs CO ₂ |
|-----------------------|---------------|-----------------------|---------------|-----------------------|---------------|-----------------------|---------------|-----------------------|

• Surfactant Alternating Gas (SAG-foam)

Simulation Results (CO₂ Saturation)

Simulation Results (CO₂ Saturation)-Cont'd

Summary of Results (Field Statistics)

Injection Senario	CO_2 injection	WAG w/o	WAG with	SAG	
,	,	hysteresis	hysteresis		
Field average CO ₂ concentration	0.24	0.22	0.28	0.31	
Cum CO ₂ injected (MMscf)	2.10E+05	2.10E+05	2.10E+05	2.03E+05	
Cum CO ₂ lost from boundaries (MMscf)	7.15E+04	8.19E+04	4.00E+04	2.05E+04	
CO ₂ lost from boundaries (%)	34	39	19	10.1	

- In continuous CO_2 injection, 34% of the total injected CO_2 does NOT store inside the selected sector model and is produced through the boundaries.
- CO₂ lost from reservoir boundaries decreases from 34% to 19% and 10.1% using WAG and SAG processes, respectively.

Geomechanical Effects of CO₂ Injection with a Poro-plasticity Model

Fluid Flow	$\frac{\partial(\rho(\phi_0 + \alpha\varepsilon_v + \frac{1}{M}(p - p_0)))}{\partial t} + \nabla \cdot \left(\rho \frac{K}{\mu}(\nabla p - \rho g \nabla h)\right) - q = 0$					
Stress Equilibrium	$\nabla \cdot (\sigma'' + \sigma_o - \alpha(p - p_0)I) + f = 0$					
Hooke's law	$\sigma'' = D^e : (\varepsilon - \varepsilon^p)$	Druker-Prager Yield Surface				
Strain-Displacement Relation	$\varepsilon \; = \; \frac{1}{2} (\nabla u + \nabla^T u)$	σ2				
Plastic Strain Evolution	$\begin{aligned} \dot{\varepsilon}^p &= \lambda \frac{\partial F(\sigma'')}{\partial \sigma''}, \text{at } Y(\sigma'') = 0\\ \dot{\varepsilon}^p &= 0, \text{at } Y(\sigma'') < 0 \end{aligned}$					
Yield and Flow Functions	$Y = q + \theta \sigma_m - \tau_0$ $F = q + \gamma \sigma_m - \tau_0$	σ_3 σ_1				

Task 4

Poroelastoplastic Deformation at Cranfield

Technical Status

Task 5. Parameter Estimation & Uncertainty Quantification (M.F.W.–lead, S. Srinivasan–consultant)

Task 5: Uncertainty Quantification

History Matching Coupled with Level-Set Parameterization, MFDFrac, and EnKF

History Matching Coupled with Level-Set Parameterization, MFDFrac, and EnKF

History Matching of a Fractured Reservoir : at the Well KB-503 in the In Salah CCS Field

History Matching of a Fractured Reservoir : at the Well KB-503 in the In Salah CCS Field

Vertical Displacement	Global-Objective Optimization	Multi-Objective Optimization			
 InSAR: satellite measured vertical displacement resulting from CO₂ injection Simulator: CMG-GEM 	 High permeability near the KB-503 well yielded underestimated BHP compared to observed BHP. 	 Low permeability near the KB-503 well improved the matching quality of BHP. 			
Vertical displacement (unit: mm)	8000 1000	(hundebuluury et al. 2016; Min et al. 2016)			

Technical Status

Task 6.

Integrate Results to Generate Geomechanical Screening Tool/Workflow (M.F.W.–lead)

Task 6: Geomechanical Screening Tool

Objectives	Derive a workflow based on project tasks performed - experimental and numerical investigation of geomechanical processes, effects, & conditions related to CO_2 storage and analysis of two CO_2 storage field case studies							
Geomech laborat Measurer (Task	anical ory nents 2)	Scale field Varia (Ta s	e-up to scale ability sk 3)	Cou hydro-cl mechanica (Tas	pled hemical- al modeling sk 4)			
Calibra	ation to field sc	ale	Pa	rameter estimatio	on &			

Calibration to field scale observations (Tasks 2, 3, 4, 5)

(Tasks 2, 3, 4, 5) (Task 5)

uncertainty quantification

Development of a Multiple Model Optimizer : IRMS (Integrated Reservoir Management S/W)

Road Ahead

- CO_2 storage volume increased by 15% and 24% of total CO_2 injection volume during WAG and SAG processes, respectively.
- It is essential to model relative permeability hysteresis during cyclic processes (WAG, SAG here) to capture the physics of the problem more accurately.
- During SAG process, foam is created at the high permeability streaks and upper layers with higher CO₂ flow rates and diverts the CO₂ flow into low permeability regions and bottom layers leading to more efficient areal and vertical sweep efficiencies.
- Optimization of WAG and SAG processes using advanced optimization toolbox
 - Genetic Algorithm (GA)
 - Evolutionary Strategy (ES)
 - Ensemble Kalman Filter (EnKF)

Accomplishments to Date

- Task 2
 - Hydro-mechanical rock properties for Frio and Cranfield rocks
 - History matching for Frio field combining laboratory experiments and field data
- Task 3
 - Handle multiscale data: well-logs, geological models, and laboratory experiments
 - General upscaling framework using adaptive homogenization
- Task 4
 - Multiphase hysteretic relative permeability model for capillary trapping
 - Poroelastoplastic model for reservoir deformation
 - CO2 foam injection for high storage capacity
- Task 5
 - History matching for Cranfield
 - General multi-objective optimization framework

Synergy Opportunities

Assistance in Decision Making

 Assist in selection of suitable sites for safe CO₂ storage using generalized S/Ws based on a posteriori knowledge

Interdisciplinary Collaboration

 Enhance understanding of the effects of CO₂ migration on open and closed faults and fractures

Training & Education

 Support training and education of students who will take part in an interdisciplinary work, e.g. IPARS tutorial

Contribution to Identifying Geological Risk for Secure CO₂ Storage!

Acknowledgements

Thank you for your attention

Contact: mfw@ices.utexas.edu

Organization Chart

Project Director										
M.F. Wheeler										
Task 1	<u>Task 2</u>	<u>Task 3</u>	<u>Task 4</u>	<u>Task 5</u>	<u>Task 6</u>					
Management	Laboratory Program	between Laboratory and Field Scales	Field Studies	Quantification and Parameter Estimation	Results to Generate Geomechanical					
					Screening Tool / Workflow					
Task Leader M.F. Wheeler	<u>Task Leader</u> N. Espinoza	<u>Task Leader</u> M.F. Wheeler	<u>Task Leader</u> M. Delshad	<u>Task Leader</u> M.F. Wheeler	<u>Task Leader</u> M.F. Wheeler					
Key Personnel M. Delshad S. Srinivasan N. Espinoza	Key Personnel M.F. Wheeler M. Delshad ½ Postdoc 1 Student (Y 1&2)	Key Personnel S. Srinivasan N. Espinoza ½ Postdoc 1 Student	Key Personnel M.F. Wheeler N. Espinoza ½ Postdoc 1 Student (Y 3)	Key Personnel M. Delshad M.F. Wheeler 1 Student S. Srinivasan (Consultant)	Key PersonnelM. DelshadS. SrinivasanN. EspinozaPostdocStudent					

Gantt Chart

Task		Sep. 2014 - Aug. 2015			Sep. 2015 - Aug. 2016			Sep. 2016 - Aug. 2017					
		Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
1	Management	А, В											
2	Laboratory Experiment			С	D		E		F	G			
3	Upscale from Lab. to Field								Н		I		
4	Simulator Development				J				к	L		Μ	
5	Uncertainty Quantification								N				Ο
6	Integrated Geo- Screening Tool												Ρ
	A to P : Milestones Scheduled Accomplished												

• <u>Publication</u>:

- Amanbek, Y., Singh, G., and Wheeler, M.F. Adaptive numerical homogenization for upscaling single phase flow and transport, Advances in Water Resources- Under Review.
- Jung, H., Singh, G., Espinoza, D. N., and Wheeler, M. F., Quantification of a Maximum Injection Volume of CO2 without Geomechanical, Advances in Water Resources Under Review.
- Min, B., Nwachukwu, A., Srinivasan, S., and Wheeler, M.F. 2016, Selection of geologic models based on Pareto-optimality using surface deformation and CO₂ injection data for the In Salah gas sequestration project. SPE Journal (submitted). Nwachukwu, A., Min, B., and Srinivasan, S. 2016, Model selection for CO₂ sequestration using surface deformation and injection data. International Journal of Greenhouse Gas Control (submitted).
- Liu, R., Ganis, B., White, D., and Wheeler, M.F. Implementation of a Drucker-Prager plasticity model in a reservoir simulator using a fixed-stress iterative coupling scheme. (In preparation).
- White, D., Ganis, B., Liu, R., and Wheeler, M.F. Simulation of the Cranfield CO₂ injection site with a Drucker-Prager plasticity model. (In preparation).

Bibliography

- <u>Publication</u>:
 - White, D., Ganis, B., Liu, R., and Wheeler, M.F. A near-wellbore study with a Drucker-Prager plasticity model coupled with a parallel compositional Reservoir simulator. (In preparation).
 - Dewers, T. et al. 2016, Control of process for subsurface science and engineering: examples from geologic carbon storage. (Submitted).

• <u>Conference</u>:

- Singh, G., Amanbek, Y., and Wheeler, M.F. 2017. Adaptive homogenization for upscaling heterogeneous porous media, SPE Annual Technical Conference, San Antonio, Texas, 9-11 October.
- Jung, H. and Espinoza, D. N., 2017, Chemo-Poromechanical Properties of Tuscaloosa Sandstone: Implications on CO₂ Geological Storage, American Rock Mechanics Association Conference, San Francisco, 25-28 June, ARMA 17-303.
- Jung, H., Singh, G., Espinoza, N., and Wheeler, M.F. 2017. An integrated case study of the Frio CO₂ sequestration pilot test for safe and effective carbon storage including compositional flow and geomechanics. SPE Reservoir Simulation Conference, Montgomery, Texas, 20–22 Feb. (accepted).
- Min, B., Srinivasan, S., Wheeler, M.F, and Nwachukwu, A. 2016. Selection of geologic models based on Pareto-optimality using surface deformation and CO₂ injection data at the In Salah gas project, Central Algeria. SPE Annual Technical Conference and Exhibition, Dubai, Arab Emirates, 26–28 Sep. (accepted).
- Min, B., Wheeler, M.F, Sun. A. 2016. Multi-objective optimization of pulse testing results using parallel compositional simulations for reservoir characterization of a CO₂-EOR field in Mississippi. AGU Fall Meeting, San Francisco, California, 12–16 Dec. (submitted).

Bibliography

• <u>Conference</u>:

- Min, B., Wheeler, M.F, and Sun. A. 2017. Parallel multiobjective optimization for the coupled compositional/geomechanical modeling of pulse testing. SPE Reservoir Simulation Conference, Montgomery, Texas, 20–22 Feb. (accepted).
- Ping, J., Al-Hinai, O., Srinivasan, S. and Wheeler, M.F., 2016, History matching for fractured reservoirs using mimetic finite differences and ensemble Kalman filter. AGU Fall Meeting, San Francisco, California, 12–16 Dec. (submitted).
- Wheeler, M.F., Amanbek, Y., and Singh, G. 2016. Upscaling reservoir properties using single well tracer test, Computational Method in Water Resources, Toronto, Canada, 21–24 Jun.
- Beygi, M.R., Varavei, A., Lotfollahi, M., and Delshad, M. 2015. Low-tension gas modeling in surfactant alternating gas and surfactant/gas coinjection processes. SPE Asia Pacific Enhanced Oil Recovery Conference, Kuala Lumpur, Malaysia, 11-13 Aug.

