Enhanced Analytical Simulation Tool for CO₂ Storage Capacity Estimation and Uncertainty Quantification

Project Number (DE-FE0009301)

Reza Ganjdanesh JP Nicot, Seyyed A. Hosseini The University of Texas at Austin

U.S. Department of Energy National Energy Technology Laboratory Mastering the Subsurface Through Technology Innovation, Partnerships and Collaboration: Carbon Storage and Oil and Natural Gas Technologies Review Meeting

August 1-3, 2017

Presentation Outline

- Project Overview
 - Goals and Objectives
- Technical Status
- Accomplishments to Date
- Synergy Opportunities
- Project Summary
- Future Plans

Project Overview Goals and Objectives

- Goals
 - Support industry to predict CO_2 storage capacity in geologic formations to within ± 30 percent.
 - Develop an Enhanced Analytical Simulation Tool (EASiTool) for simplified reservoir models to predict storage capacity of brine formations (open or closed boundary).
- Objectives
 - Provide fast, reliable and science-based estimate of storage capacity.
 - Integrate analytical/semi-analytical geomechanical models
 - Integrate brine extraction models.
 - Provide sensitivity analysis.

Technical Status

- Task 2, 3 and 4 completed.
- General geometry/pattern completed.
- More verification and application.

- Finding the optimized rate to maximize storage capacity

- Calculations for maximum injection pressure added to EASiTool.
- Integrates thermal and pore pressure stresses.
 - Normal fault system

$$P_{\max} = \frac{1}{\left[2\alpha - \beta_{\nu} - \beta_{h} - (\beta_{\nu} - \beta_{h})\cos 2\theta + (\beta_{\nu} - \beta_{h})\sin 2\theta/\mu\right]} \cdot \left[\left\{(1+K) + (1-K)\cos 2\theta - (1-K)\sin 2\theta/\mu\right\}\sigma_{\nu 0} - \left\{(\beta_{\nu} + \beta_{h}) + (\beta_{\nu} - \beta_{h})\cos 2\theta - (\beta_{\nu} - \beta_{h})\sin 2\theta/\mu\right\}P_{pi} - \frac{2\alpha_{T}E\Delta T}{1-2\nu}\right]$$

• Reverse fault system

$$P_{\max} = \frac{1}{\left[2\alpha - \beta_h - \beta_v - (\beta_h - \beta_v)\cos 2\theta + (\beta_h - \beta_v)\sin 2\theta/\mu\right]} \cdot \left[\left\{(K+1) + (K-1)\cos 2\theta - (K-1)\sin 2\theta/\mu\right\}\sigma_{v0} - \left\{(\beta_h + \beta_v) + (\beta_h - \beta_v)\cos 2\theta - (\beta_h - \beta_v)\sin 2\theta/\mu\right\}P_{pi} - \frac{2\alpha_T E\Delta T}{1 - 2\nu}\right]$$

• Strike-slip fault system

$$P_{\max} = \frac{1}{\alpha - \beta_h} \left[\left(\frac{1 + K_H}{2} + \frac{1 - K_H}{2} \cos 2\theta - \frac{1 - K_H}{2} \sin 2\theta / \mu \right) \sigma_{H0} - \beta_h \cdot P_{pi} - \frac{\alpha_T E \Delta T}{1 - 2\nu} \right]$$

- Finding the optimized rate to maximize storage capacity

- Development and improving user interface

EASiToolGUI			-						
Main Interface							×		
GCCCC GULF COAST CARBON CENTER						BUREAU OF ECONOMIC GEOLOGY			
1-RESERVOIR PARAMETERS			(3-SIMULATION PARAMETERS		4-NPV	² 40 σ ^θ ξ ₂₀₀ δ		
						Injector Drilling Cost [\$M/well] 1			
Input File Name				Sensitivity Analysis (Slow)		Extractor Drilling Cost (SM/well)	± <u>2</u> 30 / ± <u>2</u> 400		
Pressure (MPa)	20	Min 18	Max 22	Simulation Time [year]	20				
Temperature [C]	20	60	70	Injection Well Radius [m]	0.1	Injector Operating Cost [\$K/well/yr] 500	<u> </u>		
	00	00	10			Extractor Operating Cost [\$K/well/yr] 500	Number of Injection Wells Number of Injection Wells		
Thickness [m]	100	75	125	Min Extraction Pressure [MPa]	29	Monitoring Cost (SK/w/km^2)	CO2 Plume Extension Well Rate (ton/day)		
Salinity [mol/Kg]	0	0	3	Injection Rate [ton/day/well]		50	10		
Porosity [-]	0.2	0.18	0.22	Extraction Rate [m^3/day/well]		Tax Credit [\$/ton] 10	8 8		
Permeability [mD]	100	10	200	May Number of Inicators			Е 6 • • X: 3.75 • Y: 3.75		
Rock Compressibility [1/Pa]	5e-10	4e-10	6e-10	10 To max Number of Injectors	0	Run	Ž 2296.1		
Max Injection Pressure (MPa)	30	29.5	32	Number of Extractors 4	•	Simulation Time [sec]= 218.9			
	400								
Reservoir Area [km^2]	100			Density of Porous Media (Ko/m^3)		Number of Injection Wells	0		
Basin Area [km^2]	100						0 5 10 0 5 10 X.km X.km		
Boundary Condition	Closed	•		Total Stress Ratio (H/V)		Estimated Max Inj Pressure [MPa]	Permeability		
2-RELATIVE PERMEABILITY (Brooks-Corey)				Biot Coefficient		Total Injected CO2 [Mton]	Frac Pressuré -		
Residual Water Saturation	0.5	0.4	0.6	Poisson's ratio		Total Extracted Brine [Mm^3]	Rock Comp		
Residual Gas Saturation	0.1	0.08	0.12	0//-ii-/Theres/Franceio-/4//0		Highert Bottomhole Pres (MPa)	Temperature		
m	3	2	4	Coefficient of Thermai Expansion [1/K]		ngnes continuore rites. [wir a]	sgc-		
n	3	2	4	Bottom Hole Temperature Drop [K]		Lowest Bottomhole Pres. [MPa]	Sairi Salinity –		
Kra0	1	0.95	1	Young's Modulus [GPa]		Number of Failed Wells	Pressure Kra0		
Kra0	0.3	0.25	0.35	Depth [m]		Visit our website.	20 30 40 50 60 70 80 90 100 110		
	0.0	5.25	0.00				Capacity		

32 - Model verification Pro1 (CMG) 30 Inj1 (CMG) Pro1 (EASiTool) 28 Pressure (MPa) Inj1 (EASiTool) 26 24 22 20 18 5 0 10 15 20 Time (year) 1.00 30.12

9

- User defined locations for injection and extraction wells
 - Adding multiple reservoirs within the same basin
 - Global pressure maps

- User defined locations for injection and extraction wells
 - Adding multiple reservoirs within the same basin
 - Global pressure maps

- Application to the USGS database
 - EASiTool after 1000 years is similar to USDOE 1%.
 - USGS estimation is higher (close to USDOE 4%).
 - EASiTool results after 25, 50, 100, and 1000 years are different.

Synergy Opportunities

- EASiTool is an analytical simulation tool for capacity estimation in saline aquifers.
- Input data required for EASiTool is typically available for most of the projects.
- EASiTool results can be compared with the results obtained in other projects via other methods (static, simulation, etc).

Project Summary

- Fourth version of EASiTool is ready for release.
- EASiTool can be applied to large databases.
- EASiTool is available for download:
 - http://www.beg.utexas.edu/gccc/EASiTool/

Future Plans

- Improving the user interface
- Application to the USGS onshore database (36 Basins)
- Application to the offshore database
- Funding to maintain and further develop EASiTool

Questions

Appendix

- Organization Chart
- Gantt Chart
- Bibliography

Organization Chart

Organization Chart

Project PI:									
Seyyea A. Hosseini									
Task 1	Task 2	Task 3	Task 4						
Project	Development of	Rock Geomechanics	Brine-Management						
Management and	Analytical Solutions for	Impact on Pressure	Impact on CO ₂						
Planning	Pressure Buildup	Buildup and Capacity	Injectivity and Storage						
		Estimation	Capacity						
Task	Task Leader/Backup	Task Leader/Backup	Task Leader/Backup						
Leader/Backup	Hosseini/Sun	Hosseini/Sun	Hosseini/Sun						
Nicot/Hosseini									
Task 1 Team	Task 2 Team	Task 3 Team	Task 4 Team						
Nicot/Hosseini/	Subtask 2.1	Subtask 3.1	Subtask 4.1						
Young/Hovorka	Hosseini/Sun/	Hosseini/Sun/	Hosseini/Sun/						
	Postdoc/s	Postdoc/s	Postdoc/s						
	Subtask 2.2	Subtask 3.2	Subtask 4.2						
	Hosseini/Sun/C12	Hosseini/Sun/	Sun/Hosseini/						
	Energy	Postdoc/s	Postdoc/s						
	Subtask 2.3	Subtask 3.3	Subtask 4.3						
	Sun/Hosseini	Sun/Hosseini	Sun/Hosseini						
	Subtask 2.4	Subtask 3.4	Subtask 4.4						
	Sun/Hosseini	Hosseini/Sun	Sun/Hosseini						
		Subtask 3.5							
		Sun/Hosseini							
		Subtask 3.6							
		Sun/Hosseini							

Gantt Chart

20

Bibliography

– Journals

- Kim, S., Hosseini, S.A, 2013, Above-zone pressure monitoring and geomechanical analyses for a field-scale CO₂ injection project in Cranfield, MS, Greenhouse Gases: Science and Technology, 4 (1), 81-98, DOI: 10.1002/ghg.1388
- Conferences
 - Kim, Seunghee, Hosseini, S. A., and Hovorka, S. D., 2013, Numerical Simulation: Field Scale Fluid Injection to a Porous Layer in relevance to CO₂ Geological Storage: Proceedings of the 2013 COMSOL Conference, Boston, Massachusetts.
 - Kim, Seunghee, Hosseini, S. A., 2014, Optimization of Injection Rates for Geological CO₂ Storage in Brine Formations, 13th Annual Conference on Carbon Capture Utilization & Storage.
 - Kim, Seunghee, Hosseini, S. A., 2014, Effect of Pore Pressure/Stress Coupling on Geological CO₂ Storage, 13th Annual Conference on Carbon Capture Utilization & Storage.