Integrated Pre-Feasibility Study for CO$_2$ Geological Storage in the Cascadia Basin, offshore Washington State and British Columbia

DE-FOA-0001584
CarbonSAFE: Phase 1

David Goldberg
Lamont Doherty Earth Observatory of Columbia University

U.S. Department of Energy
National Energy Technology Laboratory
Mastering the Subsurface Through Technology Innovation, Partnerships and Collaboration:
Carbon Storage and Oil and Natural Gas Technologies Review Meeting
August 1-3, 2017
Objective:

Integrated pre-feasibility study to characterize an ocean basalt reservoir for safe and permanent storage of 50 MMT of CO₂ in the Cascadia Basin, offshore Washington State and British Columbia
CarbonSAFE Project Goals

Goal 1: Technical assessment of offshore basalt reservoirs for safe and permanent CO$_2$ storage (e.g., reservoir characterization, CO$_2$ sourcing, transport, and monitoring at offshore site)

Goal 2: Non-technical assessment of offshore CO$_2$ storage site (e.g., regulatory framework, stakeholder engagement, risk assessment, financial needs and long-term liability)
CO$_2$ storage security and permanence in basalt

prevailing view in 2005

CO_2 injected into water reservoirs below the surface may be stored through structural, residual solubility and mineral trapping

current view in 2016

In situ mineralization via CO$_2$-fluid-basalt reactions occurs quickly (a few years)

Snaebjornsdottir et al., IJGGC, 2017
Wallula, WA Basalt Pilot Project

• Injected 1000 tons CO$_2$ (liquid) into permeable, layered basalt flow tops

• After 2 years, isotopic analysis of sidewall cores chemically distinguishes post-injection ankerite nodules from ambient carbonate

• Progressive enrichment in Fe & Mn over time indicates mineralization of host basalt, not re-precipitated calcite

McGrail et al., ES&TL, 2016
Upscaling questions: in situ mineral carbonation in basalt

- Do other adequate basalt reservoir sites exist?

- What are anticipated in situ reaction rates? Will \(\text{scCO}_2 \) injection rapidly precipitate carbonates, other minerals?

- What is best injection strategy for \(\text{CO}_2 \) with seawater for large volumes? To optimize mineralization?

- What large potential industrial sources of \(\text{CO}_2 \) could be delivered to the site?

- What are best monitoring and volume assessment methods?
CO\textsubscript{2} storage in the Cascadia Basin

CO\textsubscript{2} injected below sediments may be stored through physical, solubility, and mineral trapping mechanisms – CarbFIX and Wallula projects show mineralization occurs quickly (a few years)

(after Goldberg et al., 2008)
Existing physical data in Cascadia Basin

- Several existing well completions and instrumentation at IODP sites along buried basement ridge

- Multi-year tracer experiments through basalt ocean crust indicate focused northward fluid flow

- Extensive core and measurement data in public archives

- Active cabled network (NEPTUNE) for observation and monitoring
Injection approaches for mineralization: Synergies with Wallula and CarbFix projects

(from Gislason and Oelkers, Science, 2014)
Preliminary accomplishments

• Developed flyer describing the project and contacted potential industry-sourced CO₂ streams in the region

• Began laboratory analysis and injection modeling studies to optimize mineralization in basalt

• Compiled inventory of existing petrophysical, hydrological, and regional data in vicinity of the offshore reservoir

• Reviewed framework for offshore storage regulations in US and Canada

• Constructed initial risk registry for project-related risks and related NRAP modeling
Potential CO$_2$ sources near Cascadia area

(from M. Scherwath, Ocean Networks Canada, 2016)
Laboratory results in seafloor samples:
CO$_2$ reaction rates in basalt

Differential Bed Reactor (DBR) Reactivity Experiments (1 bar @ 30°C, far from equilibrium)

Low pH ~3 Samples: 11.7% CaO, 7.4% MgO, 10.8% FeO

High pH ~6 Samples: 11.7% CaO, 7.4% MgO, 10.8% FeO

Results show differing behaviors in glassy and non-glassy basalt, especially under low pH conditions

→ 76% Ca extraction from non-glassy basalt at low pH
Water Alternating Gas (WAG) miscible flooding for CO$_2$ mineralization in basalt

Initial 3-cycle model using STOMP-CO2 with ECKEChem to optimize for CO$_2$ solubility in seawater and mineralization in basalt

(see poster Thursday – Demirkanli, et al.)
Physical data categories, subtasks and status in inventory

<table>
<thead>
<tr>
<th>Tasks</th>
<th>Bathymetry</th>
<th>Chemistry</th>
<th>CO₂ Source and Transport</th>
<th>Heat Flow, Temperature and Pressure</th>
<th>Geologic Model</th>
<th>Physical Properties</th>
<th>Seisms</th>
<th>Seismicity</th>
<th>Site/Hole Info</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1: CO₂ Source Availability</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.2: CO₂ Transportation to Offshore Storage Site</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.3: Evaluation of Storage Reservoir</td>
<td>![Available]</td>
<td>![To be Produced]</td>
<td>![Known and Missing]</td>
<td>![Needed but Nonexistent]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.4: Long-term Monitoring of CO₂ Storage</td>
<td>![Available]</td>
<td>![To be Produced]</td>
<td>![Known and Missing]</td>
<td>![Needed but Nonexistent]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.5: Risk Assessment of CO₂ Storage</td>
<td>![Available]</td>
<td>![To be Produced]</td>
<td>![Known and Missing]</td>
<td>![Needed but Nonexistent]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(as of 24 July 2017)
Natural Seismicity: Juan de Fuca tectonic plate

Data sources: IRIS Interactive Earthquake Browser; USGS Earthquake Catalog; Natural Resources Canada Earthquake Database; Ocean Networks Canada Cascadia Basin
Preliminary Project Risk Registry

Tally of identified project risks from the comprehensiveness analysis

(As of 5 July 2017)

<table>
<thead>
<tr>
<th>Responsible Actor</th>
<th>R Tally</th>
<th>Component</th>
<th>C Tally</th>
<th>Time/Phase</th>
<th>T Tally</th>
<th>Location</th>
<th>L Tally</th>
<th>Goal</th>
<th>G Tally</th>
<th>Activity</th>
<th>A Tally</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operator</td>
<td>16</td>
<td>C01</td>
<td>7</td>
<td>T01 pre-FEED</td>
<td>1</td>
<td>L01</td>
<td>G01</td>
<td>A01 Mission & Scoping</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Funder</td>
<td>3</td>
<td>C02</td>
<td>0</td>
<td>T02 FEED</td>
<td>11</td>
<td>L02</td>
<td>G02</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Insurer</td>
<td>2</td>
<td>C03</td>
<td>2</td>
<td>T03 Pilot-Demo</td>
<td>16</td>
<td>L03</td>
<td>G03</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chief Engr</td>
<td>10</td>
<td>C04</td>
<td>17</td>
<td>T04 Build</td>
<td>0</td>
<td>L04</td>
<td>G04</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chief Geosci</td>
<td>8</td>
<td>C05</td>
<td>4</td>
<td>T05 Operate</td>
<td>8</td>
<td>L05 Resv Far Field</td>
<td>G05 Execute On Budget</td>
<td>5 A05 Envt Bsn Monitoring</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Permits-Compliance</td>
<td>10</td>
<td>C06</td>
<td>1</td>
<td>T06 Close operations</td>
<td>1</td>
<td>L06 Non-localized</td>
<td>G06 Monitor & Control</td>
<td>5 A06 Permits & Compliance</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Builder</td>
<td>1</td>
<td>C07</td>
<td>0</td>
<td>T07 Post-Closure/PISC</td>
<td>1</td>
<td>G07 Prove injectivity</td>
<td>4 A07 Communications</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Driller</td>
<td>1</td>
<td>C08</td>
<td>7</td>
<td>G08 Prove seal</td>
<td>2</td>
<td>A08 Surface construction</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sfc Monitor</td>
<td>3</td>
<td>C09</td>
<td>6</td>
<td>G09 Prove capacity</td>
<td>1</td>
<td>A09 Drill & Complete</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subsfc Monitor</td>
<td>7</td>
<td>C10</td>
<td>2</td>
<td>G10 Inform public</td>
<td>5</td>
<td>A10 Capture ops</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Communications</td>
<td>10</td>
<td>C11</td>
<td>3</td>
<td>G11 Plan next steps after pill</td>
<td>0</td>
<td>A11 Transmission ops</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monitoring sfc</td>
<td>3</td>
<td>C12</td>
<td>6</td>
<td>G12 No envt damage</td>
<td>2</td>
<td>A12 Injection ops</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dynamic model</td>
<td>3</td>
<td>C13</td>
<td>1</td>
<td>G13 No one hurt</td>
<td>2</td>
<td>A13 Monitor & Model</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operations</td>
<td>3</td>
<td>C14</td>
<td>2</td>
<td>A14 Finance & Control</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eco protection</td>
<td>2</td>
<td>C15</td>
<td>1</td>
<td>A15 Management ongoing</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Public consent</td>
<td>3</td>
<td>C16</td>
<td>1</td>
<td>A16 Decommission</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Lessons Learned to date

- Large potential sources of anthropogenic CO_2 exist in the region.
- Existing regulations appear to restrict CO_2 transport across national boundaries (e.g., between US and Canada).
- Compiled hydrological data indicate basalt injectivity is high but likely anisotropic.
- Laboratory studies of CO_2–basalt–water mixtures indicate large variability in reaction rates.
- Real-time injection monitoring is feasible using NEPTUNE.
Project Summary

• **Objective**: Integrated pre-feasibility study to characterize an ocean basalt reservoir for safe and permanent storage of 50 MMT of CO$_2$ in the Cascadia Basin, offshore Washington State and British Columbia

• **Accomplishments**: Technical and non-technical tasks for assessment of this storage option are on track for the anticipated project schedule

• **Next steps**: Project workshop, 3-5 October 2017
Thank you