NETL RIC Carbon Storage FWP Task 2 – Reservoir and Seal Performance Task 3 – Shales as Seals and Unconventional Repositories

Dustin Crandall

US DOE NETL, Research & Innovation Center

Geological & Environmental Systems Directorate

Geophysics Team

U.S. Department of Energy

National Energy Technology Laboratory Mastering the Subsurface Through Technology Innovation, Partnerships and Collaboration: Carbon Storage and Oil and Natural Gas Technologies Review Meeting

August 1-3, 2017

Presentation Outline

- FWP and task overview
- Technical status
 - $-\operatorname{scCO}_2$ contact angle $\rightarrow k_r$
 - scCO₂ interactions with reservoir and sealing formations
- Accomplishments
- Lessons learned
- Summary

NETL RIC Carbon Storage Portfolio

Enhancing Effectiveness and Reducing Uncertainty in Long-Term CO₂ Storage and Efficiency

Overall FWPs

Task 2

- 2.1 Fluid Interactions
 - scCO₂/brine k_r
 - scCO₂/brine contact angle
- 2.2 scCO₂ Induced Changes to Rock
 - Seal and reservoir rocks
- 2.3 Microbial Induced Changes
 - Characterizing subsurface systems in response to scCO₂

Task 3

- 3.1 Macroscopic Interactions
 - Laboratory core floods
 - Literature review of CO₂/shale interactions
- 3.2 Microscopic Interactions
 - scCO₂ exposure batch reactions
 - FIB/SEM umCT
- 3.3 Field and Core
 - Describe and distribute core

Overall FWPs

Task 2

- 2.1 Fluid Interactions
 - scCO₂/brine k_r
 - scCO₂/brine contact angle
- 2.2 scCO₂ Induced Changes to Rock
 - Seal and reservoir rocks
- 2.3 Microbial Induced Changes
 - Characterizing subsurface systems in response to scCO₂

Task 3

- 3.1 Macroscopic Interactions
 - Laboratory core floods
 - Literature review of CO₂/shale interactions
- 3.2 Microscopic Interactions
 - scCO₂ exposure batch reactions
 - FIB/SEM umCT
- 3.3 Field and Core
 - Describe and distribute core

Traditional Contact Angle Setup

- Sessile drop measurements of scCO₂/brine/solid contact angles (θ) in a controlled system
- Device to measure three locations on a substrate developed and functional
- System operational and baseline measurements being collected

Traditional θ Progress

- Initial measurements on quartz plates have been performed
- Roughness, impact of temperature, pressure, and material being examined

In-situ θ Setup

- 1. Berea cored to 1.6 inch long by 0.25 inch diameter.
- 2. Flood system with gas CO_2 at low pressure to remove air.
- 3. Raise pore and confining pressures to 1800 and 2100 psi.
- Injected CO₂-saturated brine, liquid CO₂, CO₂-saturated brine sequentially.
 - Each injection step was scanned.
- 5. Raised temperature (115°F) and equilibrated for 24 hours.
- 6. Followed by two high magnification scans.

In-situ θ Methods

2D ImageJ Angle Tool:

- XY, XZ, YX-Planes
- Tudek et al. 2017; Dalton et al 2017

PerGeos® 3D Contact Line Method:

• Andrew et al. 2014, Scanziani et al. 2017, and Lv et al. 2017

In-situ θ Comparisons

- Measurement of contact angle varies depending on method
- Automated processes are being developed, but consistency across labs needed

θ Range

30° - 80°

10° - 105°

5° - 110°

10° - 105°

 Impact of θ differences being evaluated in LBM models

θ per ROI

20

150

150

~180

Method

1

2a

2b

3

Average

 $57.2^{\circ} \pm 13.0^{\circ}$

 $44.4^{\circ} \pm 14.3^{\circ}$

 $43.5^{\circ} \pm 17.0^{\circ}$

 $46.2^{\circ} \pm 15.9^{\circ}$

scCO₂ Relative Permeability

- Evaluating variation in scCO₂ k_r of different depositional environments
- Constant scCO₂ flow, controlled P & T.

scCO₂ k_r Progress

Dynamic measurement of change in

 $\overline{S_d} = \frac{\frac{V_i(t)}{V_p}}{a + b\frac{V_i(t)}{V_p}} + S_{d,i}$

ion with CT scanning ne CO₂ saturation and calculate k_r

CO₂ interactions with shale

- Literature review of CO₂-Shale interactions from various disciplines
- Available as Technical Reports
 - Review of the Effects of CO2 on Very-Fine-Grained Sedimentary Rock/Shale - Part I: Problem Definition (June 2016) <u>link</u>
 - Review of the Effects of CO2 on Very-Fine-Grained Sedimentary Rock/Shale - Part II: Clay Mineral & Shale Response to Hydration (Aug 2016) <u>link</u>
 - Review of the Effects of CO2 on Very-Fine-Grained Sedimentary Rock/Shale - Part III: Shale Response to CO2 (In review)
- Combined, over 400 pages with ~200 citations

CO₂ interactions with shale

- Condensing to a easier to access base document for peer-review
- Using knowledge gained to develop 'best practices' for describing shale research across different laboratory spaces

Shale Reactions with CO₂/Water

Long-Term - effects of carbon dioxide and fluid on Utica shale

- Utica Shale: Flat Creek Member exposed to CO₂ under dry and wet conditions
- Change in shale measured with *in-situ* FT-IR, SEM with feature relocation, and BET surface area/pore size analysis
- Kerogen and clays studied independently to understand influence
- Dry results shown in following slides

FT-IR Spectrometer Sample holder set up for FT-IR. Note water film

SEM used for feature relocation before and after dry/wet CO₂ exposure.

Shale Reactions with CO₂

- Clays: adsorption at v₃ 2343 cm⁻¹ observed
 - Kerogen: shoulder at v_3 2343 cm⁻¹ and weak adsorption between 665 to 645 cm⁻¹
 - Utica Shale: combined clay and kerogen adsorption, in addition to carbonate-like band interactions

16

Shale Reactions with CO₂/Water

Long-Term - effects of carbon dioxide and fluid on Utica shale

Mineral dissolution and etching was observed

Shale Swelling Setup

- Fractured Middle Bakken and calcite rich Marcellus samples exposed to CO₂ at elevated pressure (13.8 MPa) for several weeks.
- CT imaging of structure to observe changes taken intermittently with permeability measurements more frequently.

Shale Swelling Results

- Fractured Bakken reduction in k, slight geometric change.
- Fractures in Marcellus, complex structure difficult to identify changes and fluctuating changes in permeability.

 Moore, J. E.; Crandall, D.; Lopano, C. L.; Verba, C. A. Carbon Dioxide Induced Swelling of Unconventional Shale Rock and Effects on Permeability; NETL-TRS-9-2017; NETL Technical Report Series; U.S. Department of Energy, National Energy Technology Laboratory: Morgantown, WV, 2017; p 28. (link)

scCO₂ changes to reservoir rock

- Long term reaction studies on the impact of scCO₂/brine at elevated T&P continue.
 - Plant Daniel, Mount Simon, and TECo samples studied
 - SEM, CT, rock properties, brine chemistry
- Cover of GHG, Dec 2016
- Extending results to TOUGHREACT

Fresh Vermillion sample

Exposed Vermillion sample

scCO₂ changes to reservoir rock

Lower Tuscaloosa formation: observable precipitations of SiO₂ (am) and kaolinite in regions with high concentration of dissolved CO₂

Selma Chalk formation: dissolution of calcite and precipitation of Fe(OH)₃ near the high-permeability zone

Accomplishments to Date

- Pore to core experimental systems developed to test scCO₂/brine/rock interactions
- Contact angle of CO₂ measured on simple and in complex surfaces at representative T&P
- Long term and short term reactions of scCO₂ with reservoir and seal rocks analyzed
 - Upscaling and development of databases underway

Lessons Learned

- Shale != Shale
 - Multi-scale analysis, including detailed characterization of shale features required to have unity across lab studies
- Complexity of nature is difficult to upscale without analogues
 - OK, so θ in pore space is higher... so what? Is this impacting k_r in a meaningful way?

Synergy Opportunities

- Within the NETL-RIC infrastructure, there are multiple teams working on these problems and synergy between the work presented here in the Carbon Storage FWP and ongoing work in the Onshore Unconventional FWP.
- The imaging and analysis capabilities provide use to external projects to NETL-RIC, including
 - EERC FE-SEM Shale Characterization project
 - ASSET Collaborations within Onshore Unconventional FWP
 - Energy Frontier Research Consortium GSCO2
 - RCSPs

Project Summary

This research plan supports DOE Core R&D goals of developing and advancing the Carbon Capture and Storage (CCS) technologies necessary for widespread commercial deployment. R&IC's Carbon Storage projects support the Storage Core Research Program's high level goals of developing technologies to allow the ability to (1) develop and validate technologies to ensure for 99 percent storage permanence, (2) develop technologies to improve reservoir storage efficiency while ensuring containment effectiveness, and (3) support industry's ability to predict CO₂ storage capacity in geologic formations to within ± 30 percent.

Appendix

These slides will not be discussed during the presentation, but are mandatory.

Benefit to the Program

Program goals addressed:

 Develop technologies that ensure safe, secure, efficient, and cost effective CO₂ containment in diverse onshore and offshore applications, protecting the environment for commercial readiness by 2030.

Project benefits statement:

- These research projects includes basic research to understand the interaction of CO₂ in geologic storage applications.
 - Long term exposure tests on reservoir and seal formations, analysis of the impact of CO₂ plumes on microbiological communities, and reductions in efficiency factor uncertainty are the primary thrusts of Task 2.
 - Direct measurements of shale properties, analysis of interactions of fractured shale with CO_2 , and an in-depth review of shale interactions with CO_2 are the primary thrusts of Task 3.
- This research contributes to the Carbon Storage Program's efforts of to develop technologies to improve reservoir storage efficiency while ensuring containment effectiveness and support industry's ability to predict CO₂ storage capacity in geologic formations to within ±30 percent.

Project Overview

Goals and Objectives

Task 2: Improve assessments of CO_2 storage for key reservoir classes by providing experimental measurements of critical properties at *in situ* conditions and characterizing critical property changes as CO_2 interacts with the reservoirs and seals.

- Uncertainties in CO₂ migration properties being quantified experimentally Relative permeability & wettability measurements of CO₂/brine/reservoir rock is ongoing with improved NETL infrastructure to accurately measure these poorly understood, yet critical, characteristics of GCS.
- 2. <u>Impact of CO₂/brine exposure on seal/reservoir rock examined</u> Long term interaction experiments continue to yield results/publications on real rock at real conditions.
- Subsurface microbial community resilience to CO₂ injection studied The ability to analyze metagenomics and perform genomic sequencing of subsurface microbial communities in CO₂ enriched environments is now possible at NETL, and the results are providing insight into the impact of CO₂ on various subsurface environments.

Task 3: Improve the characterization of shales as both seals for CO_2 containment and as reservoirs for geologic storage of CO_2

- <u>Technical reports on shale interactions with CO₂/water released</u> A detailed review of the state of knowledge of CO₂/shale interactions across multiple disciplines to guide future research questions.
- Shale swelling of fractured cores observed Core scale experimental work is showing interactions of shale/CO₂ reducing fracture permeability and accurate permeability equipment is being calibrated.
- 3. <u>Variations in pore structure of different shales imaged</u> Nano and Micro-scale research into the pore structure, and CO₂ interactions, with shale are revealing the wide range of structures and behaviors of the motley substance we call shale.

Organization Chart

Task 2

- Team Portfolio Lead Angela Goodman
- Task Technical Lead Dustin Crandall
- Subtask PIs, planners, and participants
 - Yee Soong, Djuna Gulliver, Jim Fazio, Sean Sanguinito, Thomas McGuire, Deepak Tapriyal, Jeong Choi, Johnathan Moore, Karl Jarvis, Bryan Tennant, Roger Lapeer, Magdalena Gill, Mathew Stadelman, Jerry Boyle, Dustin McIntyre, Bret Howard, Kevin Shanley, Goodarz Ahmadi, Neal Sams, Liwei Zhang, Igor Haljasmaa, Lyanda Dudley, Brian Ellis, Cheng Chen, Kyle Bibby, Daniel Lipus ...

Task 3

- Team Portfolio Lead Angela Goodman
- Task Technical Lead Dustin Crandall
- Subtask PIs, planners, and participants
 - Christina Lopano, Ernest Lindner, Circe Verba, Igor Haljasmaa, Bob Dilmore, Johnathan Moore, Karl Jarvis, Bryan Tennant, Yee Soong, Igor Haljasmaa, Lei Hong, Scyller Borglum, Michael Hannon, Jan Goral, Alex Washburn, Mary Tkatch, Barbara Kutchko, Jeffery Culp, Sittichai Natesakhawat, Sean Sanguinito ...

Gantt Chart - Task 2

Thank you to Brian Plowman and Budd Schaffer (Deloitte) for assisting with these!

Gantt Chart - Task 3

Thank you to Brian Plowman and Budd Schaffer (Deloitte) for assisting with these!

Bibliography – Task 2

Journal, multiple authors:

Crandall, D.; Moore, J.; Gill, M.; Tudek, J. (2017) Understanding micro-to-macro scale control on multiphase phenomena in CO₂ reservoir rock, NETL-TRS-3-2017; Technical Report Series; U.S. Department of Energy, National Energy Technology Laboratory: Morgantown, WV, 2017; p 24.

Publication:

- Dalton, L., Crandall, D., Goodman, A. (August 2017) In situ contact angle measurements of supercritical CO2, brine, and sandstone cores using micro-CT imaging, Microscopy and Microanalysis 2017, August 6-10, St. Louis, MO
- Menefee, A., Crandall, D., Giammar, D. E., Ellis, B.R. (August 2017) Characterization of reaction fronts associated with mineral carbonation of fractured basalts, Goldschmidt 2017, August 13-18, Paris France
- Dalton, L.E., Crandall, D., Goodman, A. (March 2017) In situ contact angle measurements of supercritical CO₂, brine, and sandstone cores using micro-CT imaging, 3rd Annual review meeting of the Energy Frontier Research Consortium GSCO2, March 29-30, Champaign IL
- Tkach, M., Goodman, A., Kutchko, B., Crandall, D., Spaulding, R., Harbert, B., Werth, C., Akono, A.-T., Druhan, J., Jessen, K., Tsotsis, T. (March 2017) Addressing geochemical alterations in reservoir rock and the impacts in seismic properties, 3rd Annual review meeting of the Energy Frontier Research Consortium GSCO2, March 29-30, Champaign IL
- Dávila, G., Druhan, J.L., Zahasky, C., Benson, S.M., Crandall, D.M., Werth, C.L. (March 2017) Real-time in situ imaging of CO₂ transport and transformation through Mt. Simon reservoir core using positron emission tomography, 3rd Annual review meeting of the Energy Frontier Research Consortium GSCO2, March 29-30, Champaign IL

Bibliography – Task 3

Journal, multiple authors:

- Tudek, J., Crandall, D., Fuchs, S., Werth, C.J., Valocchi, A.J., Chen, Y., and Goodman, A. (accepted) In situ contact angle measurements of liquid CO₂, brine, and Mount Simon sandstone core using micro-CT imaging, sessile drop, and lattice Boltzmann modeling, J. Petrol Science special edition "Energy Frontier Research".
- Delaney, D., Purcell, C., Mur, A., Haljasmaa, I., Soong, Y, Crandall, D., and Harbert, W. (accepted) Dynamic Moduli and Attenuation: Rhyolite and Carbonate Examples, The Leading Edge
- Crandall, D.; Moore, J.; Rodriguez, R.; Gill, M.; Soeder, D.; McIntyre, D.; Brown, S. (2017) Characterization of Martinsburg Formation using Computed Tomography and Geophysical Logging Techniques; NETL-TRS-4-2017; Technical Report Series; U.S. Department of Energy, National Energy Technology Laboratory: Morgantown, WV, 2017; p 68.

Publications:

- Carr, T.R., Wilson, T.H., Sharma, S., Hewitt, J., Costello, I., Carney, B.J., Jordon, E., Yates, M., McPhil, K., Uschner, N., Thomas, M., Akin, S., Magbagbeola, O., Morales, A., Johansen, A., Hogarth, L., Anifowoshe, O., Naseem, K., Hammack, R., Crandall, D., Kumar, A., Zorn, E, and Vagnetti, R. (Accepted) Marcellus Shale Energy and Environment Laboratory: Subsurface Reservoir Characterization and Engineered Completion submitted to the Unconventional Resources Technology Conference, 24-26 July 2017, Austin TX
- Verba, C., Crandall, D., Moore, J., and Lopano, C. (Accepted) Petrophysical Characterization of the Bakken Shale for Carbon Storage Investigation to be presented at the Unconventional Resources Technology Conference, 24-26 July 2017, Austin TX
- Hakala, J.A., Moore, J.E., Phan, T.T., Crandall, D., Lopano, C.L., Sharma, S. (Accepted) Laboratory-scale studies on chemical reactions between fracturing fluid and shale core from the Marcellus Shale Energy and Environmental Laboratory (MSEEL) site, to be presented at the Unconventional Resources Technology Conference, 24-26 July 2017, Austin TX
- Kavousi, P., Carr, T., Wilson, T., Amini, S, Wilson, C., Crandall, D. (accepted) Correlating distributed acoustic sensing (DAS) to natural fracture intensity for the Marcellus Shale, 87th annual meeting of the society of exploration geophysicists, 24-29 September, Houston TX
- Verba, C., Montross, S., Spaulding, R., Dalton, L., Crandall, D., Moore, J., Huerta, N., and Kutchko, B. (April 2017) Petrophysical Characterization of Foamed Cement for Potential Carbon Storage Initiatives submitted to the 2017 Carbon Capture, Utilization, and Storage Conference, 10-13 April 2017, Chicago IL.