Pore Scale Control of Gas and Fluid Transport at Shale Matrix-Fracture Interfaces

FWP 100211

John Bargar

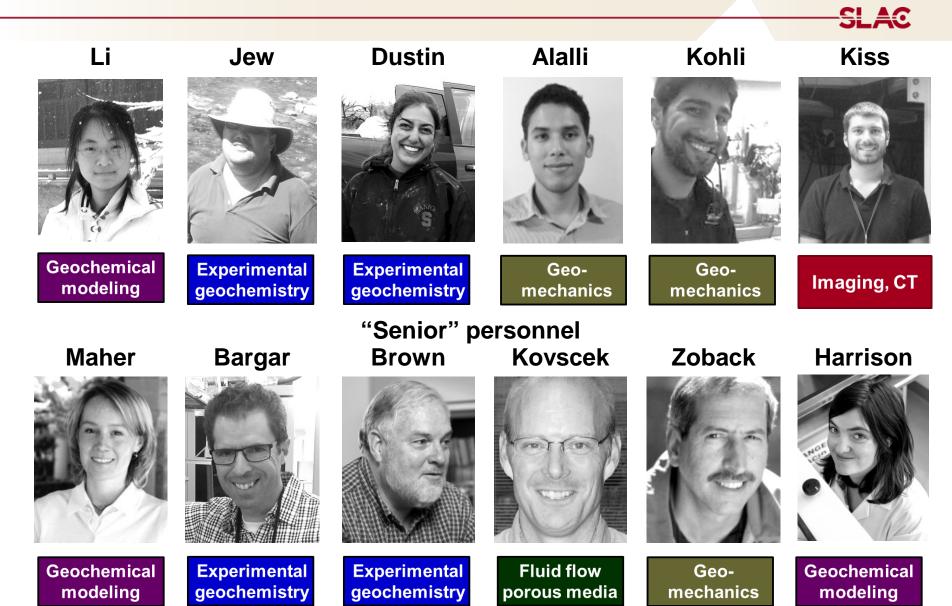
SLAC National Accelerator Laboratory and Stanford University

U.S. Department of Energy

National Energy Technology Laboratory

Mastering the Subsurface Through Technology, Innovation and Collaboration:

Carbon Storage and Oil and Natural Gas Technologies Review Meeting

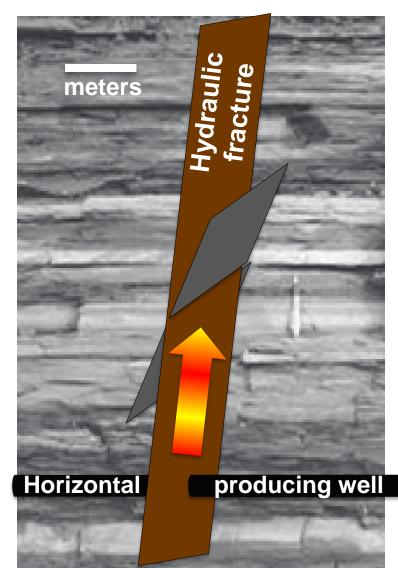

August 1, 2017

Team

Outline

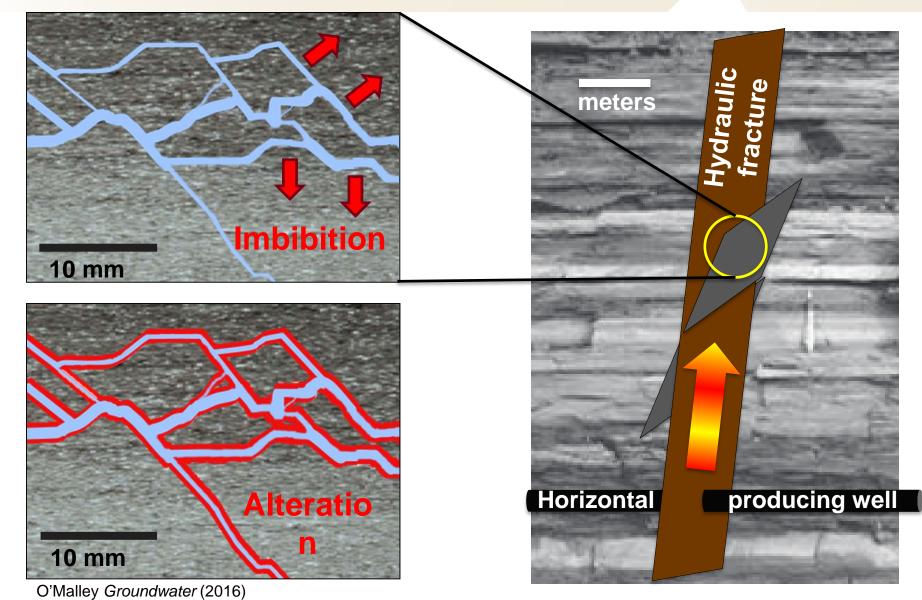
- Motivation and need
- Technical progress
 - Geochemical controls for barite scale formation

- Alteration of shale-fracture interfaces
- Accomplishments to date
- Lessons learned
- Synergy opportunities
- Project summary
- Appendix
 - Benefit to program
 - Project overview
 - Organization chart
 - Gantt chart
 - Bibliography

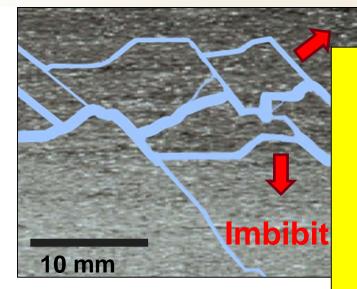

Pulsed high-rate injection

Stimulation sequence

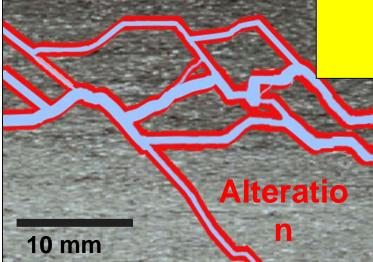
Acid *not* neutralized during stimulation (requires days)

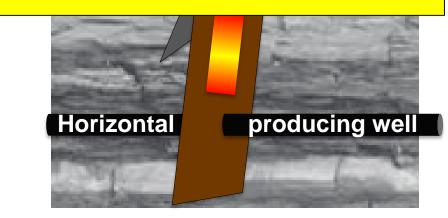

Matteo Int J Greenhouse Gas Cntrl (2012); Harrison Appl Geochem (2017)

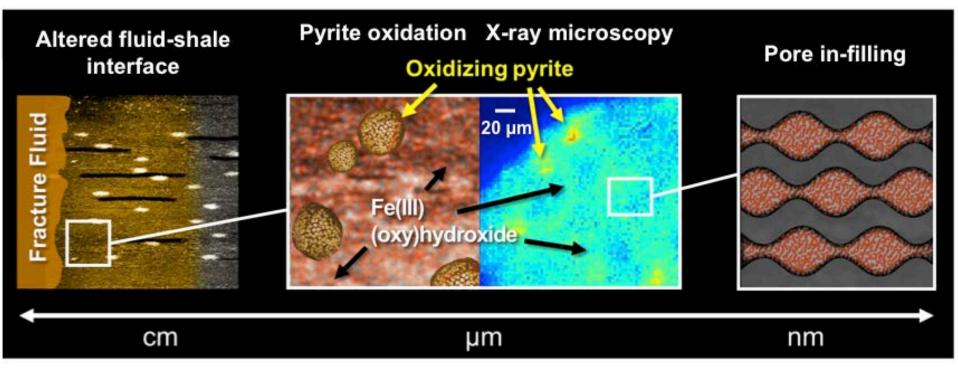
• Reactive fluid pushed out into entire stimulated volume



Majority of stimulation fluid is imbibed into matrix



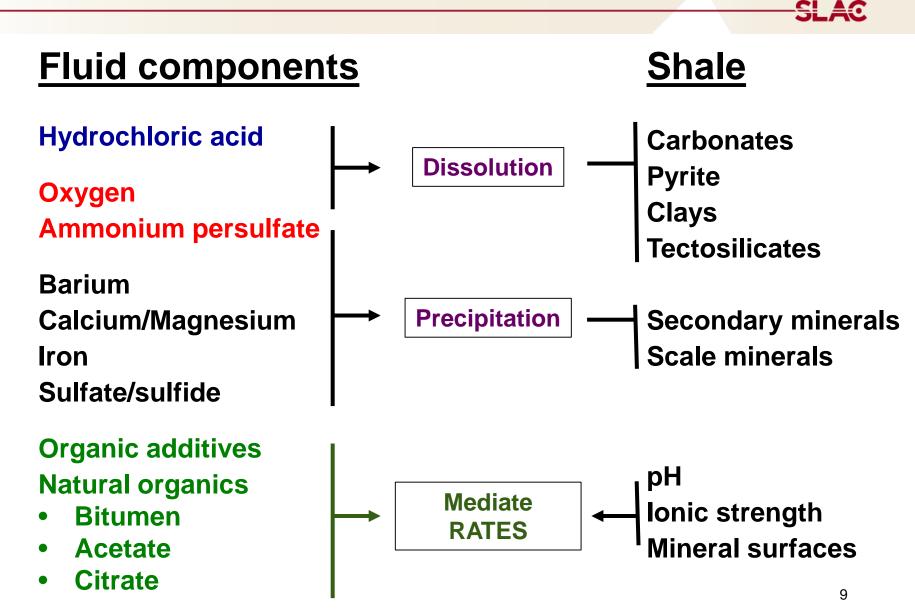

Majority of stimulation fluid is imbibed into matrix


- Altered zone acts as 'gate' for hydrocarbons from matrix
- Interface can enhance or degrade production efficiency
- Long-term impact: 30 to 50 year life span of wells

O'Malley Groundwater (2016)

Oxidative Iron scale precipitation in matrix

Jew et al. *Energy and Fuels* (2017) Harrison *Appl. Geochem.* (2017)


- Demonstrated secondary precipitation occurs in the matrix
- Fe(II) oxidation accelerated by organics

Hypotheses

Barite scale *matrix* precipitation mediated by:

- Organics
- Acid neutralization

Reactive components

Technical progress

Question 1. What are the geochemical controls over barite precipitation?

> Impact of pH, ionic strength? Impact of organics?

Barium ubiquitous in hydraulic fracturing systems

SLAC

- > 1 g/kg oil/gas shales
- Generally supersaturated in flowback (e.g., Dieterich Fuel 2016)

Low solubility ($K_{sp} = 10^{-9.34}$)

Numerous sources of Ba:

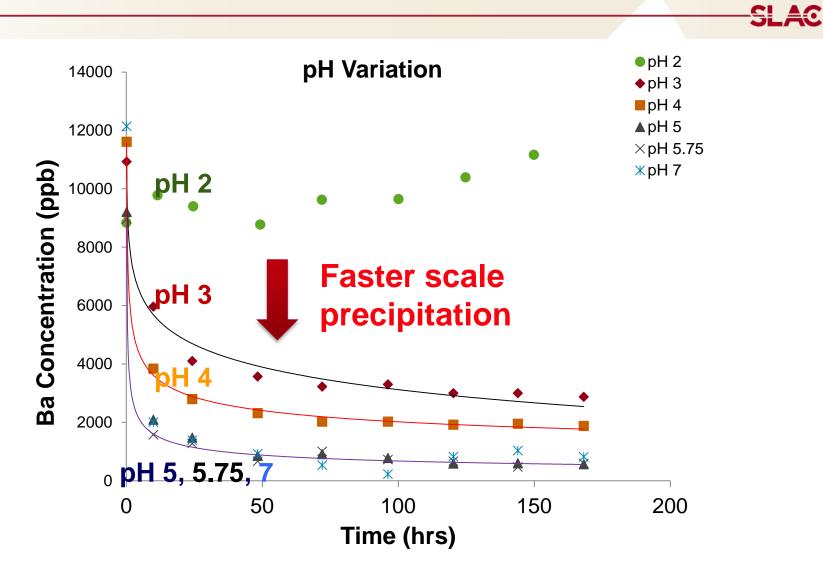
- Ba-infused drilling mud (> 10 g/kg)
- Shale (> 1 g/kg): Barite, witherite, clays

(Renock, Appl. Geochem. 2016)

Experimental approach:

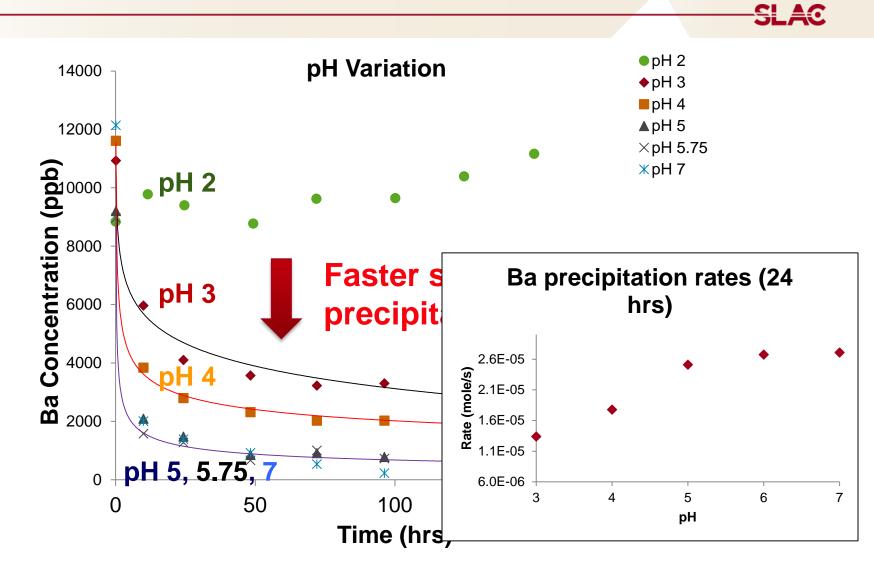
Systematic investigation:

- Individual organics in solution (no shale)
- Full fracture fluid (no shale)
- + Shale surfaces
- 40 mL batch reactors
- Ba/SO₄ 0.01 mM (1:1 Ba:SO₄)
- + Organics
- 80°C
- pH: 2.0 to 7.0
- 0.06 mM to 2.2 M NaCl
- 7 days 24 hr sampling
- Filter size: 20 nm

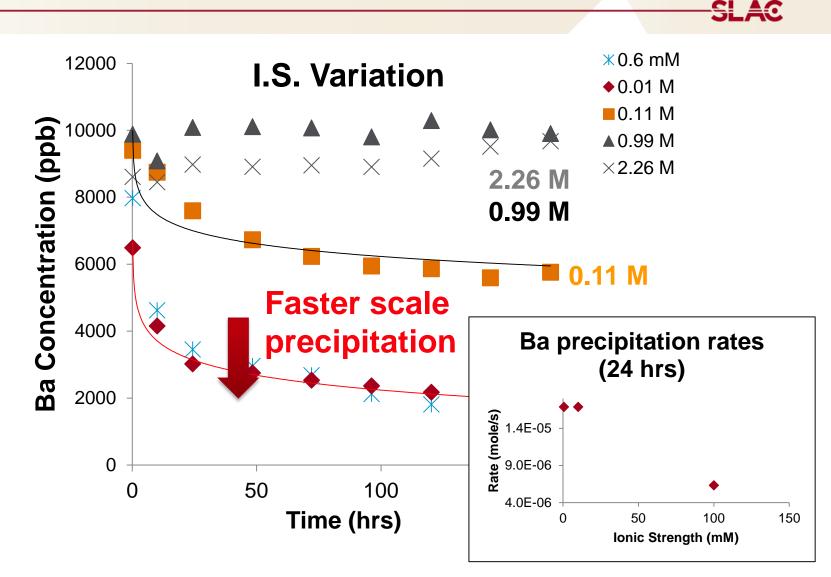

Organics to be investigated

Flowback /

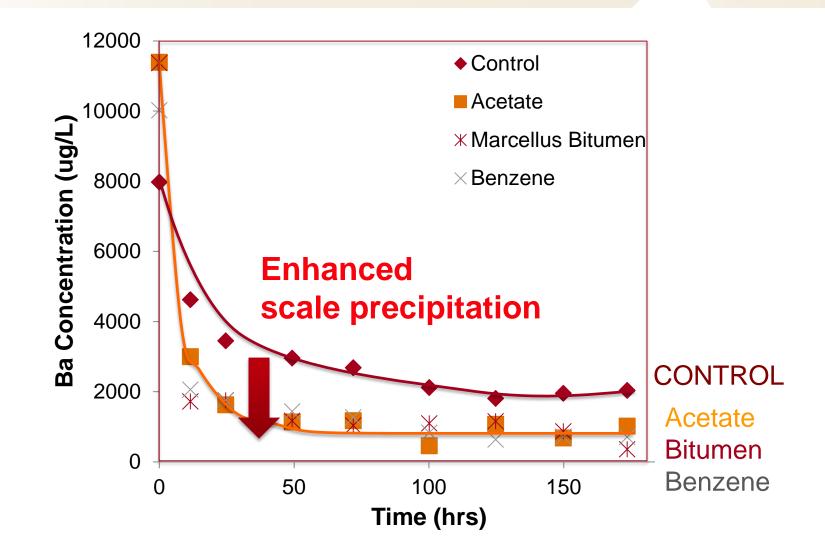
-SLAC


	Organic	Purpose											
a	Acetate	Natural											
<u>Natural</u>	Citric Acid	Natural, Iron Control											
Na	Bitumen	Natural											
Additives	Kerosene	Friction Reducer											
	Ethylene Glycol	Winterizing agent, anti-scaling											
	Polyethylene glycol	Biocide											
	2-ethyl hexanol	Corrosion inhibitor											
	Guar Gum	Gellant											
	Glycol ether	Corrosion inhibitor											
	Ammonium persulfate	Breaker											
	Methanol	Corrosion inhibitor											
	Glutaraldehyde	Biocide											
Cec	Malonate	Produced water											
Produced	N-alkane	Produced water											
L L L L	Cyclohexane	Produced water											

Effect of pH on barite precipitation rates

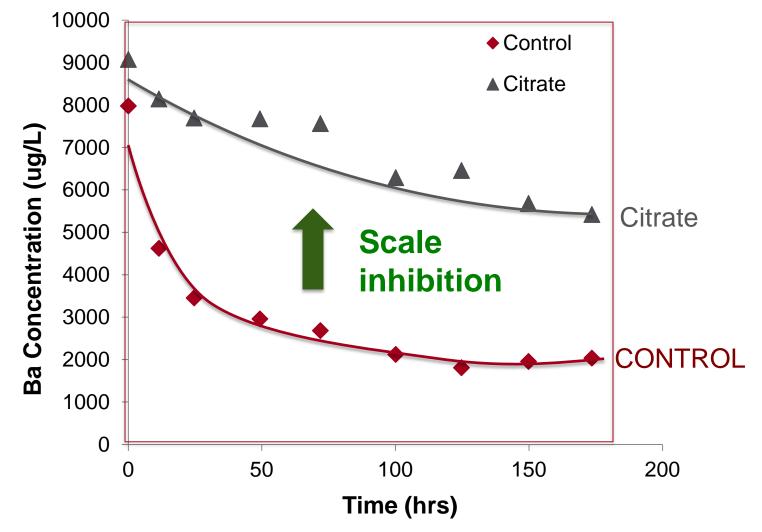

Precipitation is fastest at neutral pH

Effect of pH on barite precipitation rates


Precipitation is fastest at neutral pH

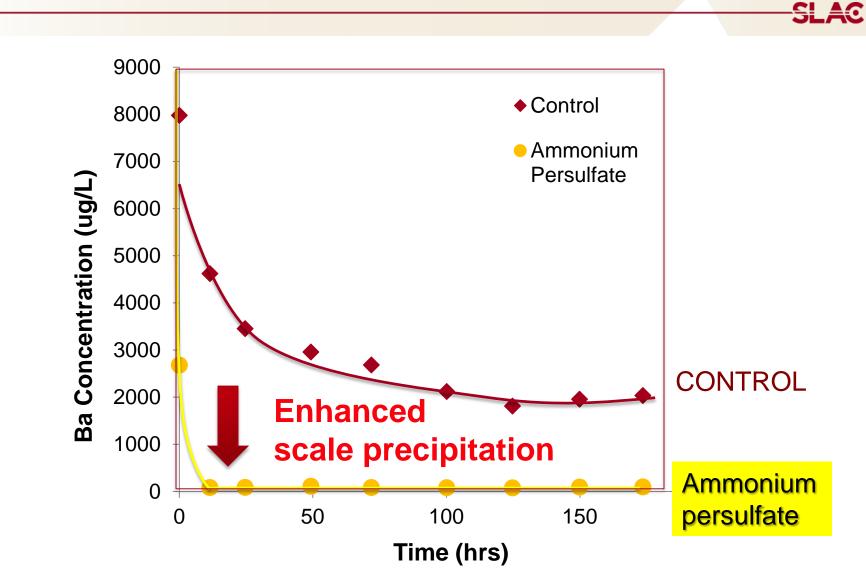
Effect of ionic strength

Precipitation faster at low ionic strength


Effect of organics

SLAC

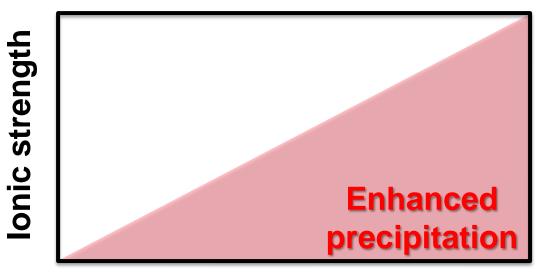
Abundant natural organics enhance scale formation


Effect of organics

SLAC

Complexing agents: some inhibitory effect

Effect of organics

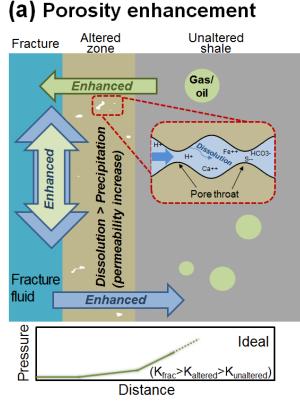


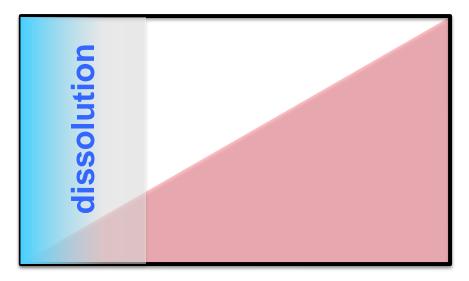
Ammonium persulfate enhances scale

Results

-SLAC

- Barite scale formation enhanced by:
 - Acid neutralization
 - Low ionic strength
 - Common & abundant shale organics

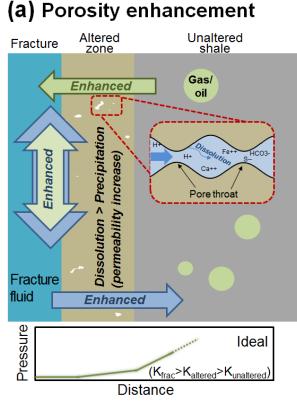

рΗ

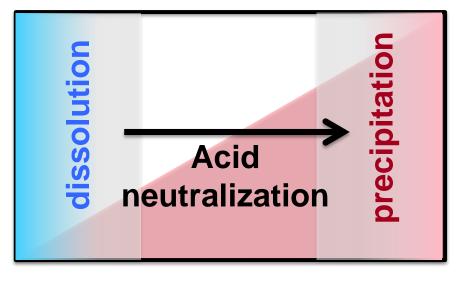

- Ammonium persulfate strongly drives barite precipitation
- Ethylene glycol (anti-scaling agent) has no effect

Question 2. How do these processes occur in shale?

Thickness of altered layer? Rates of alteration? Implications for transport?

Conceptual model for shale alteration

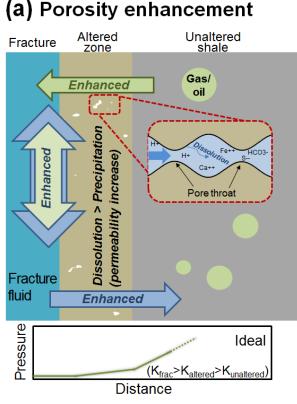




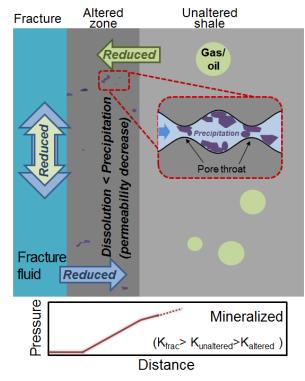
рΗ

- **Increased** permeability parallel *and* perpendicular to fracture
- **Greater** penetration of pressure fall-off into matrix

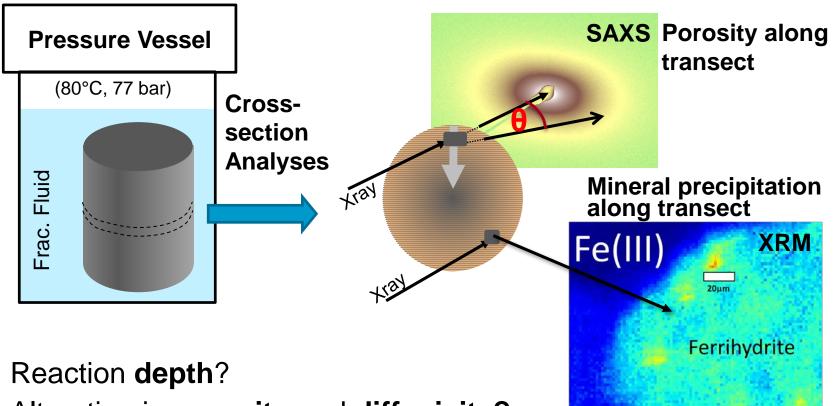
Conceptual model for shale alteration



рΗ


- **Increased** permeability parallel *and* perpendicular to fracture
- **Greater** penetration of pressure fall-off into matrix

Conceptual model for shale alteration



- **Increased** permeability parallel and perpendicular to fracture
- **Greater** penetration of pressure fall-off into matrix

(b) Porosity occlusion

- **Decreased** permeability parallel and perpendicular to fracture
- Less penetration of pressure falloff into matrix

- Alteration in porosity and diffusivity?
- Mineralogy effects?
- Impact of **barite scale**?

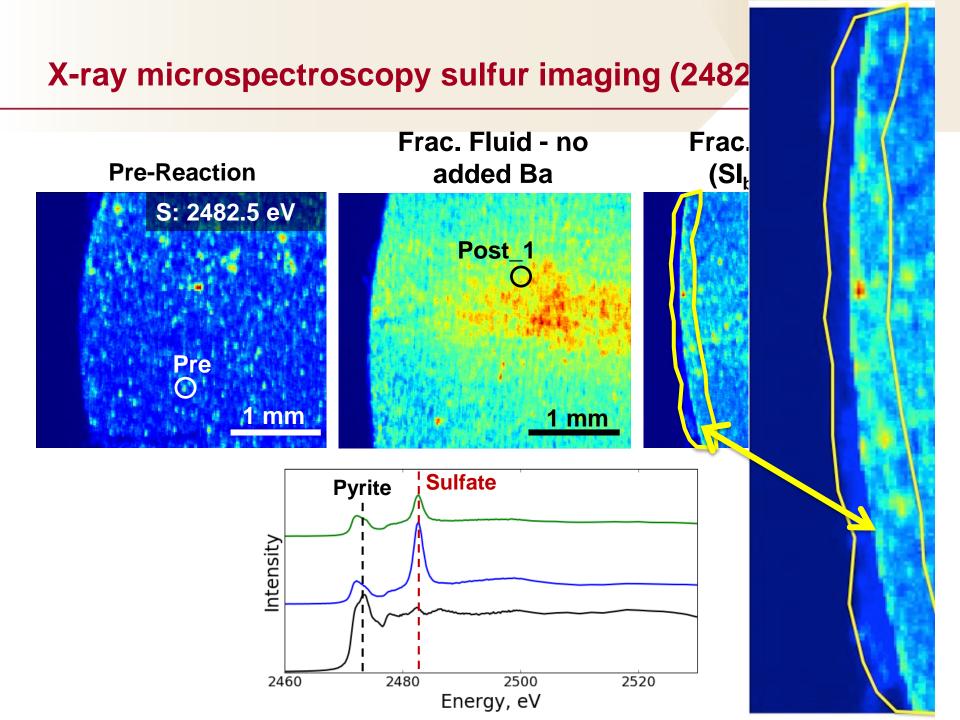
Micro-CT (5µm/p

Marcellus (Pennsylv

- liquid/solid = ~15 d
- 80 °C, 77 bar, 3 w
- Fluid pH: $2 \rightarrow 4$

Scale formation altered fluid composition

Fe ppt. No Fe ppt.

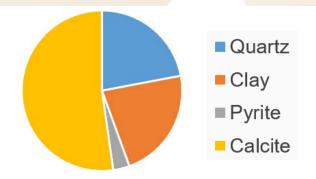


SLAC

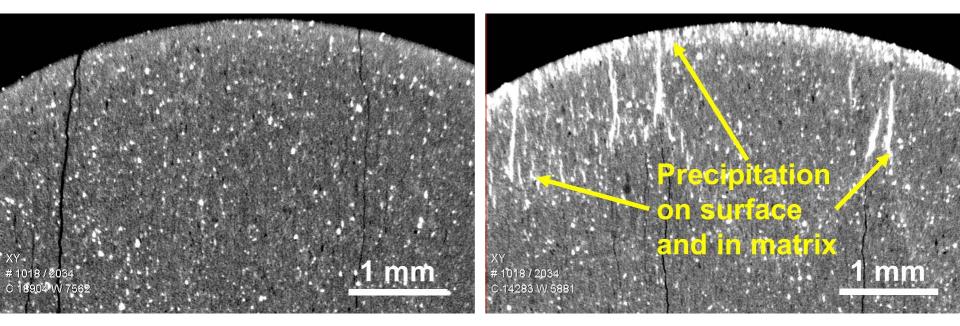
XY # 1025 / 2034 C 11500 W 6000

Frac. Fluid - no added Ba

Frac. Fluid + Ba (SI_{barite} = 1.3)


X-ray microspectroscopy sulfur imaging (2482.5 eV) SLAC Frac. Fluid - no Frac. Fluid + Ba (SI_{barite} = 1.3) **Pre-Reaction** added Ba S: 2482.5 eV Post_1 Post_2 Pre 1 mm 1 mm mm Sulfate Pyrite Inte 2480 2500 2520 2460

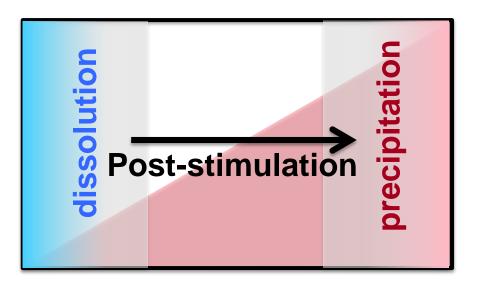
Energy, eV

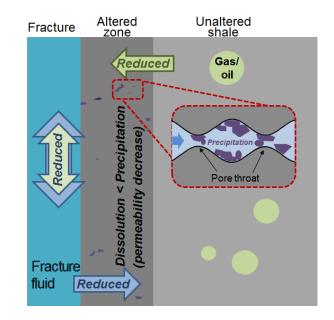

Micro-CT (5µm/pixel)

Eagle Ford: Carbonate-rich

- liquid/solid = ~15 cm³/cm³
- 80 °C, 77 bar, 3 weeks
- Fluid pH: $2 \rightarrow 5.5$

SLAC




Frac. Fluid - no added Ba

Frac. Fluid + Ba (SI_{barite} = 1.3)

Conclusions

- Neutral pH, organics, low ionic strength enhance precipitation
- Dissolution releases Ba²⁺, sulfate, 'priming' system
- Post-stimulation neutralization of acid drives scale precipitation
- Thin coatings have a large impact on permeability & geochemistry

- Matrix permeability evolution (pressure pulse decay)
- Investigate impact of shale surfaces on scale formation

- Numerical models of altered zone processes, reactive transport
- Observe gas flow paths, alteration

Project Management

- ✓ Published 4 manuscripts; 2 in preparation
- \checkmark 15 presentations (3 invited) at national/international meetings

- ✓ Identifying major geochemical controls over barite scale precipitation and mechanisms of permeability reduction
- Demonstrated precipitation of secondary minerals and scale within shale in response to unconventional stimulation
- ✓ Modeled key fracture fluid-shale reaction networks
- ✓ Developed new model for iron redox behavior in shales
- ✓ Developed model for processes controlling U release

Lessons learned

- Permeability measurements are slow, about 1 month per sample complete measurement suite, due to very low permeability of shales. This requires careful prioritization of sample targets.
- Geochemical studies of shale response to fracture fluids are being performed first to identify critical targets for permeability investigation.
- A large experimental matrix is required to investigate the impact of different organics on barite precipitation at relevant temperatures. To address this, we have decided to use a batch method, which provides high throughput at elevated temperatures (80°C).

Synergy Opportunities

COLLABORATIONS:

- Fracture-scale geochemistry
- Field context experiments (MSEEL) MSEEL, HFTS
- Reservoir-scale simulations
- Reactive transport modeling
- Microbially-mediated geochemistry
- Fracture fluid compositions

- A. Hakala, C. Lopano (NETL)
- S. Karra (LANL)
- G. Guthrie (LANL)
- S. Eisenlord (GTI), P. Mouser (OSU)

slac

- S. Gupta (BHI)
- Stimulated zone-scale geochemistry F. Liu (Conoco-Phillips)

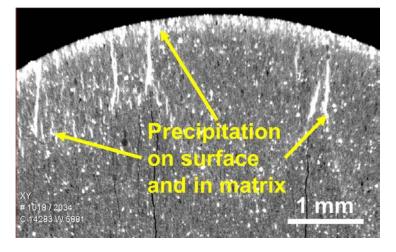
Project goals: improve knowledge base - critical processes

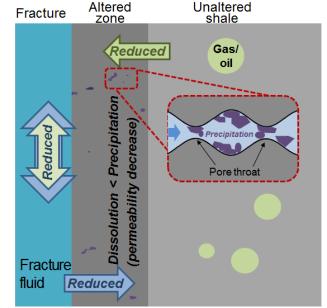
- (i) Characterize shale alteration: nanometers to microns
- (ii) Identify geochemical controls
- (iii) Link to permeability modification
- (iv) Develop numerical models

Success criteria:

- On-time execution of PMP
- Link shale alteration to permeability
- Develop numerical models
- Presentations at national/international meetings
- Publications in major journals

THANK YOU, **NATIONAL INATIONAL INATION**

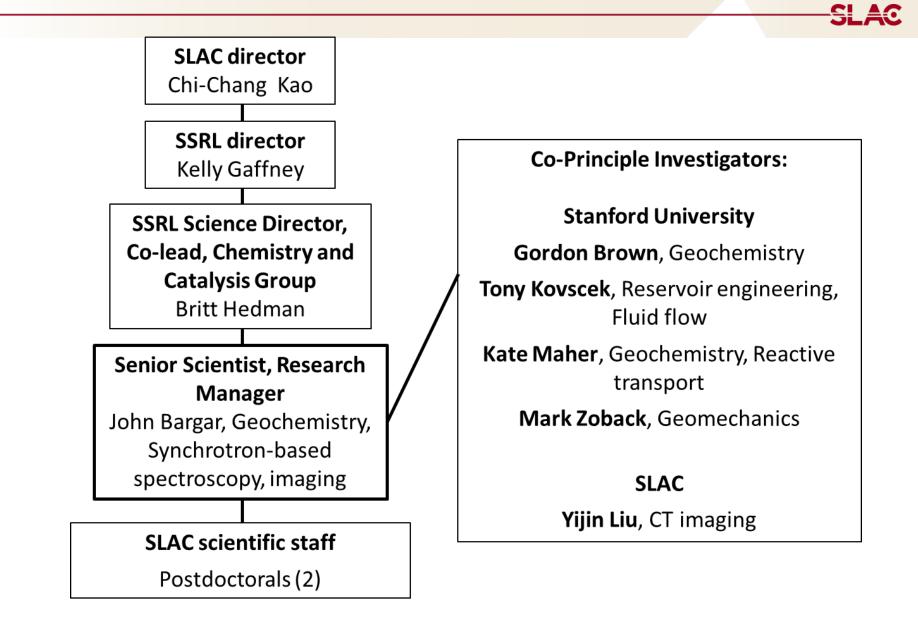

Appendices


Benefit to the Program

Program goals addressed:

- Improve efficiency of unconventionals: geochemical controls on shale permeability
- Reduce environmental impact: contaminant fate /transport
- Lay foundation for transformational advancement of unconventional resource recovery

Fracture-fluid interfaces are crucial


Project goals: improve knowledge base - critical processes

- (i) Characterize shale alteration: nanometers to microns
- (ii) Identify geochemical controls
- (iii) Link to permeability modification
- (iv) Develop numerical models

Success criteria:

- On-time execution of PMP
- Link shale alteration to permeability
- Develop numerical models
- Presentations at national/international meetings
- Publications in major journals

Organization Chart, Expertise, and Roles

Gantt Chart – reproduced from Quarter 3 report (7-30-2017)

Task	Title	Month of project 2016 2017 2018 201																												
			2016			2017													20	18					201	19				
		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29
		Oct	Nov	Dec	Jan	Feb	Mar	Apr																			Nov	Dec	Jan	Feb
1	Project management plan																													
	Development of PMP																													
	Recruit postdoc/RA																													
	Quarterly research performance reports																													
1.4	Annual research performance report																													
	Final technical report																													
2	Influence of dissolved organic compounds	onp	recipi	itate f	orma	tion/s	stabil	ity																						
2.1	Evaluate literature/ experimental design																													
2.2	Set-up and test stirred tank reactors																													
2.3	Complete initial scoping experiments																													
2.4	Complete measurements of initial rates																													
	of solid precipitation																													.
2.5	Identification of precipitate mineralogy																													
2.6	Measure shale sand dissolution																													
2.7	Complete solubility measurements																													
2.8	Dissolution rate measurements in																													
	presence of shale sands																													
2.9	Complete initial draft of manuscript																													
2.10	Submit manuscript																													
3	Impact of secondary pore networks on gas	trans	sport	across	s shal	e mat	rix-fra	actur	e inte	rfaces	5	-																		
3.1	Evaluate literature/ experimental design																													
3.2	Submit beam time proposals																													
	Acquire shale samples																													
3.4	Quarterly (as needed) with NETL group																													
3.5	Quarterly (as needed) with LANL group																													
3.6	Mineral characterization shale samples																													
3.7	Measure permeability of unreacted cores																													
	Collect µ-CT images, unreacted cores																													
3.9	Image processing, unreacted shale cores																													
3.10	Test whole-core reactors: Initial scoping																													.
	experiments																													
	Perform shale whole-core reactions																													
	Collect µ-CT images on reacted cores																													
	XRM maps, unreacted/ reacted cores																													,
	Measure permeability of reacted cores																													
3.15	Image processing, reacted shale cores																													
3.16	Develop numerical model: secondary																													.
	pore network formation																													,
3.17	Complete initial draft of manuscript																													,
	Submit manuscript	I				Ļ		L	Ļ																					
4	Impact of matrix precipitation on gas trans	port	across	s shale	e mat	rix-fra	acture	e inte	rfaces	5		1											1						_	
	Evaluate literature/ experimental design																													
	Measure permeability of unreacted cores																													
	Collect µ-CT images, unreacted cores																													<u> </u>
4.4	Image processing, unreacted shale cores																													
4.5	Test whole-core reactors: Initial scoping																													,
	experiments																			_										
4.6	Perform shale whole-core reactions								<u> </u>																					<u> </u>
4.7	Measure permeability of reacted cores																													
	Collect µ-CT images on reacted cores							<u> </u>	l																					
	XRM maps, unreacted/ reacted cores								<u> </u>																					
4.10	Image processing, reacted shale cores																			_										J
4.11	Develop numerical model: matrix																													,
	precipitation																													

Bibliography

SLAC

Journal Publications

Jew, A.D., Harrison, A.L., Dustin, M.K., Joe-Wong, C., Thomas, D.L., Maher, K., Brown, G.E., D. Cercone, and Bargar, J.R. 2017, Mineralogical and Porosity Alteration Following Fracture Fluid-Shale Reaction. Unconventional Resources Technology Conference Proceedings (in press).

Harrison, A.L., Jew, A.D., Dustin, M.K., Thomas, D.L., Joe-Wong, C.M., Bargar, J.R., Johnson, N., Brown, G.E., Jr., and Maher, K., 2017, Element release and reaction-induced porosity alteration during shale-hydraulic fracturing fluid interactions. Applied Geochemistry v. 82, p.47-62. Available at: https://doi.org/10.1016/j.apgeochem.2017.05.001.

Jew, A.D., Harrison, A.L., Dustin, M.K., Harrison, A.L., Joe-Wong, C.M., Thomas, D.L., Brown, G.E., Jr., Maher, K., and Bargar, J.R., 2017, Impact of Organics and Carbonates on the Oxidation and Precipitation of Iron during Hydraulic Fracturing of Shale. Energy and Fuels v. 31, p. 3643–3658. Available at: 10.1021/acs.energyfuels.6b03220.

Kiss, A.M., Jew, A.D., Joe-Wong, C.M., Maher, K., Liu, Y., Brown, G.E., Jr. and Bargar, J.R., 2015, Synchrotron-based transmission X-ray microscopy for improved extraction in shale during hydraulic fracturing. SPIE Optical Engineering + Applications, v. 959200. Available at: doi:10.1117/12.2190806

Conference poster presentations (*presenting author)

John R. Bargar*, Adam D. Jew, Anna L. Harrison, Andrew Kiss, Arjun Kohli, Qingyun Li, Katherine Maher, and Gordon E. Brown, Jr., (2017) Geochemistry of Shale-Fluid Reactions at Pore and Fracture Scales. Goldschmidt Geochemistry conference, Aug 16. (invited)

John R. Bargar*, Adam D. Jew, Anna L. Harrison, Andrew Kiss, Arjun Kohli, Qingyun Li, Katherine Maher, and Gordon E. Brown, Jr., (2017) Pore Scale Control of Gas and Fluid Transport at Shale Matrix-Fracture Interfaces. Mastering the Subsurface Through Technology, Innovation and Collaboration: Carbon Storage and Oil and Natural Gas Technologies Review Meeting, Aug 1.

Adam D. Jew^{*}, Megan K. Dustin, Anna L. Harrison, Claresta Joe-Wong, Dana L. Thomas, Katharine Maher, Gordon E. Brown Jr., and John R. Bargar (2016) The Importance of pH, Oxygen, and Bitumen on the Oxidation and Precipitation of Fe(III)-(oxy)hydroxides during Hydraulic Fracturing of Oil/Gas Shales. American Geophysical Union Fall Meeting, San Francisco, USA, December 13.

Bibliography

SLAC

Conference poster presentations (*presenting author)

John R. Bargar*, Andrew Kiss, Arjun Kohli, Anna L. Harrison, Adam D. Jew, Jae-Hong Lim, Yijin Liu, Katherine Maher, Mark Zoback, and Gordon E. Brown, Jr., (2016) synchrotron X-ray imaging to understand porosity development in shales during exposure to hydraulic fracturing fluid. American Geophysical Union Fall Meeting, San Francisco, USA, December 12.

Anna L. Harrison, Katharine Maher, Adam D. Jew^{*}, Megan K. Dustin, Andrew Kiss, Arjun Kohli, Dana L. Thomas, Claresta Joe-Wong, Gordon E. Brown Jr., and John R. Bargar (2016) H21J-04 The Impact of Mineralogy on the Geochemical Alteration of Shales During Hydraulic Fracturing Operations. American Geophysical Union Fall Meeting, San Francisco, USA, December 13.

John R. Bargar*, Andrew Kiss, Arjun Kohli, Anna L. Harrison, Adam D. Jew, Megan Dustin, Claresta Joe-Wong, Katherine Maher, Gordon E. Brown, Jr., Mark Zoback, Yijin Liu, and David Cercone, (2016) Geochemistry of shale-fluid reactions at pore and fracture scales. 252nd American Chemical Society National Meeting, Aug 21 (invited)

John R. Bargar*, Andrew Kiss, Arjun Kohli, Anna L. Harrison, Adam D. Jew, Megan Dustin, Claresta Joe-Wong, Katherine Maher, Gordon E. Brown, Jr., Mark Zoback, Yijin Liu, and David Cercone, (2016) Chemical control of fluid flow and contaminant release in shale microfractures. Mastering the Subsurface Through Technology, Innovation and Collaboration: Carbon Storage and Oil and Natural Gas Technologies Review Meeting, Aug 18.

Anna Harrison*, Kate Maher, Adam Jew, Megan Dustin, Andy Kiss, Arjun Kohli, Dana Thomas, Claresta Joe-Wong, Yijin Liu, J.-H. Lim, Gordon Brown Jr., and John Bargar (2016) Physical and chemical alteration of shales during hydraulic fracturing. Presented at the 2016 Goldschmidt Conference, Yokohama, Japan, June 29, 2016.

Megan K. Dustin*, Adam D. Jew, Anna L. Harrison, Claresta Joe-Wong, Dana L. Thomas, Katharine Maher, Gordon E. Brown Jr., and John R. Bargar (2015) Kerogen-Hydraulic Fracture Fluid Interactions: Reactivity and Contaminant Release. American Geophysical Union Fall Meeting, San Francisco, USA, December 14-18.

Anna L. Harrison*, Adam D. Jew, Megan K. Dustin, Claresta Joe-Wong, Dana L. Thomas, Katharine Maher, Gordon E. Brown Jr., and John R. Bargar (2015) A Geochemical Framework for Evaluating Shale-Hydraulic Fracture Fluid Interactions. American Geophysical Union Fall Meeting, San Francisco, USA, December 14-18.

Adam D. Jew^{*}, Claresta Joe-Wong, Anna L. Harrison, Dana L. Thomas, Megan K. Dustin, Gordon E. Brown Jr., Katharine Maher, and John R. Bargar (2015) Iron Release and Precipitation in Hydraulic Fracturing Systems. American Geophysical Union Fall Meeting, San Francisco, USA, December 14-18.

Bibliography

Claresta Joe-Wong^{*}, Anna L. Harrison, Dana L. Thomas, Megan K. Dustin, Adam D. Jew, Gordon E. Brown Jr., Katharine Maher, and John R. Bargar (2015) Coupled mineral dissolution and precipitation reactions in shale-hydraulic fracturing fluid systems. American Geophysical Union Fall Meeting, San Francisco, USA, December 14-18.

Megan K. Dustin*, Adam D. Jew, Anna L. Harrison, Claresta Joe-Wong, Dana L. Thomas, Katharine Maher, Gordon E. Brown Jr., and John R. Bargar (2015) Kerogen-Hydraulic Fracture Fluid Interactions: Reactivity and Contaminant Release. Stanford Synchrotron Radiation Lightsource 2015 User's Meeting, Stanford, USA, Oct 7-9.

Anna L. Harrison*, Adam D. Jew, Megan K. Dustin, Claresta Joe-Wong, Dana L. Thomas, Katharine Maher, Gordon E. Brown Jr., and John R. Bargar (2015) A Geochemical Framework for Evaluating Shale-Hydraulic Fracture Fluid Interactions. Stanford Synchrotron Radiation Lightsource 2015 User's Meeting, Stanford, USA, Oct 7-9.

John R. Bargar*, Gordon E. Brown, Jr., Megan K. Dustin, Anna L. Harrison, Adam D. Jew, C.M. Joe-Wong, and Katharine Maher (2015) Geochemical control of shale fracture and matrix permeability. Shales without Scales Workshop, Santa Fe, USA, June 10. (invited)

Seminar and workshop presentations (*presenting author)

Anna L. Harrison*, Adam D. Jew, Megan K. Dustin, Claresta Joe-Wong, Dana L. Thomas, Katharine Maher, Gordon E. Brown Jr., and John R. Bargar (2015) A Geochemical Framework for Evaluating Shale-Hydraulic Fracture Fluid Interactions. Stanford Center for Secure Carbon Storage Research Seminar, Stanford, USA, October 21.

John R. Bargar*, Gordon E. Brown, Jr., Megan K. Dustin, Anna L. Harrison, Adam D. Jew, C.M. Joe-Wong, and Katharine Maher (2015) Geochemical control of shale fracture and matrix permeability. Baker Hughes Incorporated, Tomball, USA, July 14. (invited)