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Pulsed high-rate injection

• Acid not neutralized during 
stimulation (requires days)

Matteo Int J Greenhouse Gas Cntrl (2012);   
Harrison Appl Geochem (2017)

• Reactive fluid pushed out into 
entire stimulated volume
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Horizontal           producing well

Majority of stimulation fluid is imbibed into matrix
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O’Malley Groundwater (2016)
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Horizontal           producing well

Majority of stimulation fluid is imbibed into matrix

10 mm
Imbibition

Alteratio
n10 mm

O’Malley Groundwater (2016)

• Altered zone acts as ‘gate’ for 
hydrocarbons from matrix

• Interface can enhance or 
degrade production efficiency

• Long-term impact: 30 to 50 year 
life span of wells
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Oxidative Iron scale precipitation in matrix

• Demonstrated secondary precipitation occurs in the matrix
• Fe(II) oxidation accelerated by organics

Jew et al. Energy and Fuels  (2017)
Harrison Appl. Geochem. (2017)
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Geochemistry?

• Geochemistry controls permeability
permeability (under explored)
• Dissolution (general): means to increase permeability, and to initiate 

massive chemical reactions
• Precipitation (general): carbonates, sulfates, iron-bearing minerals 

oxides
• Ppt reduces permeability by occluding fracture apertures and by 

coating fracture surfaces
• Fe redox: can be driven by  DO and pH changes

Hypotheses

Barite scale matrix precipitation mediated by:
• Organics

• Acid neutralization
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Geochemistry?

• Geochemistry controls permeability
permeability (under explored)
• Dissolution (general): means to increase permeability, and to initiate 

massive chemical reactions
• Precipitation (general): carbonates, sulfates, iron-bearing minerals 

oxides
• Ppt reduces permeability by occluding fracture apertures and by 

coating fracture surfaces
• Fe redox: can be driven by  DO and pH changes

Technical progress
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Geochemistry?

• Geochemistry controls permeability
permeability (under explored)
• Dissolution (general): means to increase permeability, and to initiate 

massive chemical reactions
• Precipitation (general): carbonates, sulfates, iron-bearing minerals 

oxides
• Ppt reduces permeability by occluding fracture apertures and by 

coating fracture surfaces
• Fe redox: can be driven by  DO and pH changes

Question 1.
What are the geochemical 

controls over barite 
precipitation? 

Impact of pH, ionic strength?
Impact of organics?



Barite: one of most important scale minerals

Barium ubiquitous in hydraulic fracturing systems
• > 1 g/kg oil/gas shales
• Generally supersaturated in flowback (e.g., Dieterich Fuel 2016)

Low solubility (Ksp = 10-9.34) 

Numerous sources of Ba:
• Ba-infused drilling mud (> 10 g/kg)
• Shale (> 1 g/kg): Barite, witherite, clays 

(Renock, Appl. Geochem. 2016)



Experimental approach: 
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Systematic investigation:
• Individual organics in solution (no shale)
• Full fracture fluid (no shale)
• + Shale surfaces

• 40 mL batch reactors
• Ba/SO4 0.01 mM (1:1 Ba:SO4)
• + Organics

• 80oC
• pH: 2.0 to 7.0
• 0.06 mM to 2.2 M NaCl
• 7 days 24 hr sampling
• Filter size: 20 nm 120 rpm End/End Tumbler



Organics to be investigated
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Organic Purpose
Acetate Natural
Citric Acid Natural, Iron Control
Bitumen Natural
Kerosene Friction Reducer
Ethylene Glycol Winterizing agent, anti-scaling
Polyethylene glycol Biocide
2-ethyl hexanol Corrosion inhibitor
Guar Gum Gellant
Glycol ether Corrosion inhibitor
Ammonium persulfate Breaker
Methanol Corrosion inhibitor
Glutaraldehyde Biocide
Malonate Produced water
N-alkane Produced water
Cyclohexane Produced water
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Effect of pH on barite precipitation rates
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Effect of ionic strength
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Effect of organics

• Abundant natural organics enhance scale formation
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Effect of organics
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Effect of organics
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Results

• Barite scale formation enhanced by:
• Acid neutralization
• Low ionic strength
• Common & abundant shale organics

• Ammonium persulfate strongly drives barite precipitation
• Ethylene glycol (anti-scaling agent) has no effect 
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Geochemistry?

• Geochemistry controls permeability
permeability (under explored)
• Dissolution (general): means to increase permeability, and to initiate 

massive chemical reactions
• Precipitation (general): carbonates, sulfates, iron-bearing minerals 

oxides
• Ppt reduces permeability by occluding fracture apertures and by 

coating fracture surfaces
• Fe redox: can be driven by  DO and pH changes

Question 2. How do 
these processes occur in 

shale?

Thickness of altered layer?
Rates of alteration?

Implications for transport?



Conceptual model for shale alteration
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• Increased permeability parallel 
and perpendicular to fracture

• Greater penetration of pressure 
fall-off into matrix
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Conceptual model for shale alteration
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• Increased permeability parallel 
and perpendicular to fracture

• Greater penetration of pressure 
fall-off into matrix
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Conceptual model for shale alteration
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• Increased permeability parallel 
and perpendicular to fracture

• Greater penetration of pressure 
fall-off into matrix

• Decreased permeability parallel 
and perpendicular to fracture

• Less penetration of pressure fall-
off into matrix



(80°C, 77 bar)

Whole Core Experiment

• Reaction depth?
• Alteration in porosity and diffusivity?
• Mineralogy effects?
• Impact of barite scale?

Fr
ac

. F
lu

id

Cross-
section
Analyses

Pressure Vessel

Mineral precipitation
along transect

θ

SAXS

XRM

Porosity along 
transect



Micro-CT (5µm/pixel)

Marcellus (Pennsylvania): Clay-rich
• liquid/solid = ~15 cm3/cm3

• 80 oC, 77 bar, 3 weeks
• Fluid pH: 2  4

Frac. Fluid + Ba (SIbarite = 1.3)Frac. Fluid - no added Ba
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X-ray microspectroscopy sulfur imaging (2482.5 eV)

S: 2482.5 eV
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Frac. Fluid + Ba 
(SIbarite = 1.3)

Frac. Fluid - no 
added Ba
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X-ray microspectroscopy sulfur imaging (2482.5 eV)

S: 2482.5 eV
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Micro-CT (5µm/pixel)

Eagle Ford: Carbonate-rich
• liquid/solid = ~15 cm3/cm3

• 80 oC, 77 bar, 3 weeks
• Fluid pH: 2  5.5

Frac. Fluid - no added Ba Frac. Fluid + Ba (SIbarite = 1.3)



Summary and conclusions

Conclusions
• Neutral pH, organics, low ionic strength enhance precipitation
• Dissolution releases Ba2+, sulfate, ‘priming’ system
• Post-stimulation neutralization of acid drives scale precipitation
• Thin coatings have a large impact on permeability & geochemistry
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Ongoing work & future directions

• Matrix permeability evolution (pressure pulse decay)
• Investigate impact of shale surfaces on scale formation
• Numerical models of altered zone processes, reactive 

transport 
• Observe gas flow paths, alteration
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Geochemistry?

• Geochemistry controls permeability
permeability (under explored)
• Dissolution (general): means to increase permeability, and to initiate 

massive chemical reactions
• Precipitation (general): carbonates, sulfates, iron-bearing minerals 

oxides
• Ppt reduces permeability by occluding fracture apertures and by 

coating fracture surfaces
• Fe redox: can be driven by  DO and pH changes

Project Management



Accomplishments to date

 Published 4 manuscripts; 2 in preparation
 15 presentations (3 invited) at national/international meetings
 Identifying major geochemical controls over barite scale 

precipitation and mechanisms of permeability reduction
 Demonstrated precipitation of secondary minerals and scale 

within shale in response to unconventional stimulation
 Modeled key fracture fluid-shale reaction networks
 Developed new model for iron redox behavior in shales
 Developed model for processes controlling U release



Lessons learned

• Permeability measurements are slow, about 1 month per sample 
complete measurement suite, due to very low permeability of 
shales.  This requires careful prioritization of sample targets.

• Geochemical studies of shale response to fracture fluids are being 
performed first to identify critical targets for permeability 
investigation.

• A large experimental matrix is required to investigate the impact of 
different organics on barite precipitation at relevant temperatures.  
To address this, we have decided to use a batch method, which 
provides high throughput at elevated temperatures (80°C).  



Synergy Opportunities

COLLABORATIONS:
• Fracture-scale geochemistry A. Hakala, C. Lopano (NETL)
• Field context experiments (MSEEL ) MSEEL, HFTS
• Reservoir-scale simulations S. Karra (LANL)
• Reactive transport modeling G. Guthrie (LANL)
• Microbially-mediated geochemistry S. Eisenlord (GTI), P. Mouser (OSU)
• Fracture fluid compositions S. Gupta (BHI)
• Stimulated zone-scale geochemistry F. Liu (Conoco-Phillips)



Project summary

Project goals: improve knowledge base - critical 
processes

• (i) Characterize shale alteration: nanometers to microns
• (ii) Identify geochemical controls
• (iii) Link to permeability modification
• (iv) Develop numerical models

Success criteria:
• On-time execution of PMP
• Link shale alteration to permeability
• Develop numerical models
• Presentations at national/international meetings
• Publications in major journals



THANK YOU,            !
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Geochemistry?

• Geochemistry controls permeability
permeability (under explored)
• Dissolution (general): means to increase permeability, and to initiate 

massive chemical reactions
• Precipitation (general): carbonates, sulfates, iron-bearing minerals 

oxides
• Ppt reduces permeability by occluding fracture apertures and by 

coating fracture surfaces
• Fe redox: can be driven by  DO and pH changesAppendices



Benefit to the Program

Program goals addressed:
• Improve efficiency of unconventionals: 

geochemical controls on shale 
permeability

• Reduce environmental impact: 
contaminant fate /transport

• Lay foundation for transformational 
advancement of unconventional 
resource recovery 

Fracture-fluid interfaces are crucial



Project overview

Project goals: improve knowledge base - critical 
processes

• (i) Characterize shale alteration: nanometers to microns
• (ii) Identify geochemical controls
• (iii) Link to permeability modification
• (iv) Develop numerical models

Success criteria:
• On-time execution of PMP
• Link shale alteration to permeability
• Develop numerical models
• Presentations at national/international meetings
• Publications in major journals



Organization Chart, Expertise, and Roles



Gantt Chart – reproduced from Quarter 3 report (7-30-2017)

Task Title

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb

1 Project management plan
1.1 Development of PMP
1.2 Recruit postdoc/RA
1.3 Quarterly research performance reports
1.4 Annual research performance report
1.5 Final technical report
2 Influence of dissolved organic compounds on precipitate formation/stability

2.1 Evaluate literature/ experimental design
2.2 Set-up and test stirred tank reactors
2.3 Complete initial scoping experiments 
2.4 Complete measurements of initial rates 

of solid precipitation
2.5 Identification of precipitate mineralogy
2.6 Measure shale sand dissolution
2.7 Complete solubility measurements
2.8 Dissolution rate measurements in 

presence of shale sands  
2.9 Complete initial draft of manuscript 
2.10 Submit manuscript

3 Impact of secondary pore networks on gas transport across shale matrix-fracture interfaces
3.1 Evaluate literature/ experimental design
3.2 Submit beam time proposals 
3.3 Acquire shale samples
3.4 Quarterly (as needed) with NETL group
3.5 Quarterly (as needed) with LANL group
3.6 Mineral characterization shale samples
3.7 Measure permeability of unreacted cores
3.8 Collect μ-CT images, unreacted  cores
3.9 Image processing, unreacted shale cores

3.10
Test whole-core reactors: Initial scoping 
experiments 

3.11 Perform shale whole-core reactions
3.12 Collect μ-CT images on reacted cores
3.13 XRM maps, unreacted/ reacted  cores
3.14 Measure permeability of reacted cores
3.15 Image processing, reacted shale cores

3.16
Develop numerical model: secondary 
pore network formation

3.17 Complete initial draft of manuscript 
3.18 Submit manuscript

4 Impact of matrix precipitation on gas transport across shale matrix-fracture interfaces
4.1 Evaluate literature/ experimental design
4.2 Measure permeability of unreacted cores
4.3 Collect μ-CT images, unreacted  cores
4.4 Image processing, unreacted shale cores

4.5
Test whole-core reactors: Initial scoping 
experiments 

4.6 Perform shale whole-core reactions
4.7 Measure permeability of reacted cores
4.8 Collect μ-CT images on reacted cores
4.9 XRM maps, unreacted/ reacted  cores
4.10 Image processing, reacted shale cores

4.11
Develop numerical model: matrix 
precipitation

2016 2017 2018 2019
Month of project
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