CarbonSAFE Rocky Mountains Phase I: Ensuring Safe Subsurface Storage of CO₂ in the Intermountain West

DE-FE-0029280

Brian McPherson University of Utah

Mastering the Subsurface through Technology Innovation & Collaboration: Carbon Storage & Oil and Natural Gas Technologies Review Meeting

August 2-4, 2017

Carbon Management Wedges from 2007

Opinion: CCS is a great path forward, but

perhaps only in the short term. The ultimate goal is to reduce emissions with "clean" energy.

2.

Rocky Mountain CarbonSAFE

CarbonSAFE: CCS in the Rocky Mountain Regiona

Primary Goal: Develop a "Blueprint" for CCS in the Rocky Mountain West

Power Plants in the Region

(image: UGS)

CarbonSAFE Rocky Mountains - Objectives

- Compare and contrast the range of possible injection sites and storage reservoirs
- Identify minimum risk, maximum storage efficiency, and minimum cost
- CarbonSAFE Rocky Mountains Phase I CCS coordination team will conduct a high-level evaluation of potential storage sites near the Hunter plant
- multiple practical storage (injection) sites will be identified and compared using a state-of-the-art systems analysis of competing costs as well as regulatory and technical requirements
- All facets considered, from permitting, capture, compression, transport, injection to monitoring.

CarbonSAFE Rocky Mountains - Project Team

Partner	Role
PacifiCorp	Plant Operator and Power Sector Requirements
Utah Geological Survey	Geologic Characterization
New Mexico Tech	Seismic and Geologic Characterization
Los Alamos National Lab	Systems Analysis (Economic-Technical)
Sandia National Lab	Caprock Characterization
Schlumberger Carbon Services	Model Development, Injection/Monitoring Well Design and Risk Assessment
University of Utah	Project Management, Simulation and Risk Assessment
University of Utah Law School	Legislative and Other Policy Requirements
Utah Department of Env. Quality	UIC and Other Permitting Requirements
Stakeholder Advisory Board	Advice on Non-Technical CCS Requirements and Public Relations

- Geologic structural anticline (San Rafael Swell)
- Hydrostratigraphic trap with multiple sealing layers above injection horizon(s)
- Primary Reservoir (White Rim SS)
 - Porosity: 4~5%
 - Permeability: 0.1~0.2 mD
- Secondary reservoir (Navajo SS)
 - Sufficiently deep: >5000 ft
 - Thick: ~420 ft
 - Thick overlying seal units
 - High porosity: >10%
 - High permeability: >100 mD
 - >50 million metric tons CO₂ storage capacity

- Geologic structural anticline (San Rafael Swell)
- Hydrostratigraphic trap with multiple sealing layers above injection horizon(s)
- Primary Reservoir (White Rim SS)
 - Porosity: 4~5%
 - Permeability: 0.1~0.2 mD
- Secondary reservoir (Navajo SS)
 - Sufficiently deep: >5000 ft
 - Thick: ~420 ft
 - Thick overlying seal units
 - High porosity: >10%
 - High permeability: >100 mD
 - >50 million metric tons CO₂ storage capacity

- CarbonSAFE Rocky Mountains Team
 Site Characterization
 - Investigating existing wells, logs and core
 - Field trips to assess surface exposures of reservoir and seal units to correlate to subsurface
 - Constructing isopach and structure maps of site
 - Constructing 3D geocellular model of site
 - Acquiring legacy 2D seismic lines to augment well data
 - Performing CO₂ storage and flow simulations

CarbonSAFE Rocky Mountains Team Site Characterization

- Investigating existing wells, logs and core
- Field trips to assess surface exposures of reservoir and seal units to correlate to subsurface
- Constructing isopach and structure maps of site
- Constructing 3D geocellular model
 of site
- Acquiring legacy 2D seismic lines to augment well data
- Performing CO₂ storage and flow simulations

San Rafael Swell Storage Complex

- CarbonSAFE Rocky Mountains Team
 Site Characterization
 - Investigating existing wells, logs and core
 - Field trips to assess surface exposures of reservoir and seal units to correlate to subsurface
 - Constructing isopach and structure maps of site
 - Constructing 3D geocellular model
 of site
 - Acquiring legacy 2D seismic lines to augment well data
 - Performing CO₂ storage and flow simulations

- Geologic structural anticline (San Rafael Swell)
- Hydrostratigraphic trap with multiple sealing layers above injection horizon(s)
- Primary Reservoir (White Rim SS)
 - Porosity: 4~5%
 - Permeability: 0.1~0.2 mD
- Secondary reservoir (Navajo SS)
 - Sufficiently deep: >5000 ft
 - Thick: ~420 ft
 - Thick overlying seal units
 - High porosity: >10%
 - High permeability: >100 mD
 - >50 million metric tons CO₂ storage capacity

CO

ECHNOLOGY

ORATORY

14

CO

Ongoing and Imminent Tasks

- Site Characterization
- Geocellular Model Development (initial model complete)
- 3-D Fully Coupled THCM Simulation Model from Geocellular Model (initial model complete)
- Forecast Storage Capacity
- Forecast PDFs and CDFs for Projected Top Risk FEPs
- Identify and Vet All Commercial Permutations Capture, Injection, Storage
 - Hunter / Huntington Power Plants Primary Sources
 - Drunkard's Wash (Gas Field) and San Rafael Swell Primary Storage Complex
 - Local (inter-county), State and Federal Regulatations
 - **UIC Permit Application Preparation**

•

.

•

Rocky Mountain CarbonSAFE http://CarbonSAFE.rocks

16

b.j.mcpherson@utah.edu | egi.utah.edu | 801.585.7961