Southwest Regional Partnership on Carbon Sequestration (SWP) DE-FC26-05NT42591

Phase III Demonstration: Farnsworth Unit

Robert Balch¹ Brian McPherson^{1,2} Mexico Institute of Mining and Technol

¹New Mexico Institute of Mining and Technology ²University of Utah

Mastering the Subsurface through Technology Innovation & Collaboration: Carbon Storage & Oil and Natural Gas Technologies Review Meeting

August 1-4, 2017

Funding for this project is provided by the U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL) through the Southwest Regional Partnership on Carbon Sequestration (SWP) under Award No. DE-FC26-05NT42591. Additional support was provided by Chaparral Energy, LLC and Schlumberger Carbon Services.

We gratefully acknowledge the contributions of more than 50 SWP scientists and engineers!

Outline

- Introduction to the SWP
- Introduction to Farnsworth Unit
- Major tasks:
 - Geologic Characterization
 - MVA
 - Simulation
 - Risk
- Conclusions and ongoing work

The Southwest Partnership

P

W

S

- SWP's Phase III: large-scale EOR-CCUS demonstration
- General Goals:
 - One million tons CO₂ storage
 - Optimization of storage engineering
 - Optimization of monitoring design
 - Optimization of risk assessment
- Blueprint for CCUS in southwestern U.S.

Project Site: Farnsworth Unit

- Farnsworth field discovered in 1955.
- About 100 wells completed by the year 1960.
 - Field was unitized in 1963 by operator Unocal
 - Water injection for secondary recovery started in 1964.

Property	Value
Initial water saturation	31.4%
Initial reservoir pressure	2218 PSIA
Bubblepoint Pressure	20-150 PSIA
Original Oil in Place (OOIP)	120 MMSTB (60 MMSTB west-side)
Drive Mechanism	Solution Gas
Primary Recovery	11.2 MMSTB (9.3%)
Secondary Recovery	25.6 MMSTB (21.3%)

Project Site: Farnsworth Unit

Anthropogenic CO₂ Supply:

500-600,000 Metric tons CO_2 /year for four fields

NATIONAL

ECHNOLOGY ABORATORY

Southwest Regional Partnership on Carbon Sequestration

Active and Currently Planned CO₂ Patterns

Outline

- Introduction to the SWP
- Introduction to Farnsworth Unit
- Major tasks:
 - Geologic Characterization
 - MVA
 - Simulation
 - Risk
- Conclusions and ongoing work

Characterization Accomplishments

- Hydraulic flow units can define units based on a refined version of Winland R35 method. These units can be distinguished at scales from microscopic to field scale.
 Eight defined for Morrow B; HFUs have been incorporated into the simulation model.
- 2D seismic lines tied to Booker Field provided insight into regional structure and suggest any potential regional CO₂ migration would be to northwest and risk of leakage appears low (many seals/ no faults to surface)
- Basin scale petroleum system modeling has shown that hydrocarbons are likely derived from Atokan black shales in the deeper basin
- Caprock integrity evaluated, with a thorough analysis of caprock from microscale through core scale
- 2nd VSP seismic data shot Dec 2016, and processed spring 2017. Time-lapse attributes such as NRMS (Normalized Root-Mean Square), Repeatability and Predictability were extracted for 1000 ft around the well 13-10A. From the aforementioned parameters, there is a clear anisotropy that runs NE-SW. This horizontal transverse anisotropy may indicate preferntial flow of CO₂ in this orientation.

Example Characterization Result - Hydraulic flow units

HFU 1 associated with the lowest porosity and permeability values.

HFU 8 in green interval highlighted indicates the highest porosity and permeability values.

Ts, T – Thin Section P – Routine Plug analysis P_c - Capillary pressure

Example Characterization Result – Petroleum System Modeling

- 2D seismic structural interpretations show regional migration is NW to NE
- Migration risk to the surface is low due to a lack of regional scale faulting and lateral continuity of sealing stratigraphy
- Hydrocarbons at FWU migrated hundreds of millions of years ago from the deeper basin Thirteen Finger and upper Morrow Black Shales.
- FWU was discovered as an under pressured reservoir when it should be over pressured. This phenomenon is seen across Northwest Anadarko Basin reservoirs and is attributed to Laramide erosion and groundwater discharge.
- Seal bypass is an area of active research, but is unlikely

Southwest Regional Partnership on Carbon Sequestration

Characterization Working Group Goals

Remaining goals

- Complete fluid substitution modeling
- Complete and publish results of caprock integrity studies
- Complete and publish results of micro-scale pore studies

Outline

- Introduction to the SWP
- Introduction to Farnsworth Unit
- Major tasks:
 - Geologic Characterization
 - MVA
 - Simulation
 - Risk
- Conclusions and ongoing work

Monitoring (MVA) Working Group Goals

As a demonstration project a comprehensive monitoring strategy is in place:

- Monitoring understand CO₂ plume movement over short and long time periods
 - Direct monitoring tests repeat air and water samples for seeps, leaks, and well-bore failures
 - Seismic MVA utilizes time lapse seismic data at a variety of scales to image the CO₂ plume over time
- Verification assurance that CO₂ stays in target reservoir, doesn't make it back to atmosphere
- Accounting Accurately measure amount of stored carbon including storage mechanisms

Example MVA Result – Tracer Studies

Tracers (Aqueous- and Vapor-Phase)

- Determine interwell connections, patterns and directions.
- Identify heterogeneities including faults/fractures.
- Fluid Velocities.
- Constrain and calibrate flow models; predict the fate of the injected CO₂.
- Detect and quantify CO₂/brine leakage to subsurface/atmosphere.
- Attempt to determine oil/CO₂ saturation levels and CO₂ storage capacity.
- Attempt to determine sweep efficiency (tracer concentration history).
- Confirm other verification methods (e.g. time-lapse seismic).
- Aqueous Phase: 8 unique naphthalene sulfonates; conservative tracers for injected water (Pete Rose – University of Utah).
- Vapor Phase: 7 unique perfluorocarbons; conservative tracers that follow gas phase (Sean Sanguinito – NETL).

Example MVA Result – Tracer Studies

- Tracers (Aqueous- and Vapor-Phase)
 - Since 2014, six unique aqueous-phase tracer injections and four unique vapor-phase tracer injections.
 - Mixed results for both.
 - Tracer by-pass and stunted migration (e.g. aqueous-phase tracer by-passed by CO₂ flood).
 - Rapid breakthrough (e.g. vaporphase tracer by-passing nearby producers, to appear several patterns away). Likely the result of mapped faults in area.
 - High detectability makes a good analog for brine/CO₂ leakage monitoring (no leaks detected).

Example MVA Result – Tracer Studies

Tracers (Aqueous- and Vapor-Phase)

 Since 2014, six unique aqueous-phase tracer injections and four unique vapor-phase tracer injections.

P

S

- Mixed results for both.
 - Tracer by-pass and stunted migration (e.g. aqueous-phase tracer by-passed by CO₂ flood).
 - Rapid breakthrough (e.g. vapor-phase tracer by-passing nearby producers, to appear several patterns away). Likely the result of mapped faults in area.
- High detectability makes a good analog for brine/CO₂ leakage monitoring (no leaks detected).

Initial tracer breakthrough (days). Larger circles mark faster breakthrough from injection (inverted triangle). Faults seem to influence breakthrough times.

Outline

- Introduction to the SWP
- Introduction to Farnsworth Unit
- Major tasks:
 - Geologic Characterization
 - MVA
 - Simulation
 - Risk
- Conclusions and ongoing work

Simulation Working Group: Main Goals

- MVA Design
- Storage Forecasts
- Risk Assessment Basis
- Selection of on-going Simulation work
 - Porosity and Permeability distribution
 - Fault Permeability
 - History Matching
 - Production Forecasting

NATIONAL

Simulated

S

Jan 201

Observed

Date

Jan 201

P

Jan 20

Simulation: Achievements

- Improved geological model with properties population based on eight distinct hydraulic flow units. The current model has improved property distribution for caprock based on geomechanical and routine core analysis conducted by Characterization Working Group (esp NMT/SNL).
- Analysis of relative permeability and capillary pressure curves based on distinct hydraulic flow units to understand uncertainty associated with CO2 storage potential within Morrow B
- Improved history matching efforts which encompasses the fault transmissibility modeling to better understand their effects on fluid flow within the Morrow B reservoir
- Pore-to log scale nuclear magnetic resonance log analysis, data processing, in house inversion and permeability calibration
- Continuous improvement of history matching with tracer sampling results to increase our understand on potential CO2 migration paths and heterogeneity within Morrow B reservoir
- Reactive transport simulations of water-CO2-rock interaction within Morrow B reservoir

Simulation: Active Goals

- Simulation of <u>production/storage history matching</u> of primary, secondary, and tertiary recovery;
- Calibrated predictions of current and future carbon dioxide storage (<u>capacity</u>) in the reservoir (e.g., for Atlas updates);
- Interpretation of <u>MVA</u> tracer experiments;
- Newly-calibrated fully-coupled, full-scale simulations used to calibrate <u>reduced order models</u> for uncertainty quantification, risk assessment and storage optimization
- Continued forecasting of potential impacts (e.g., risk FEPs) via coupled thermal, <u>geochemical</u> and geomechanical processes

Simulation Result: Reactive Transport

Reactive transport simulation of water-CO₂-mineral interactions in the Morrow B Sandstone in the Farnsworth Unit (TOUGHREACT and STOMP):

- Migration of CO₂ through the reservoir
- Partitioning of CO₂ between aqueous solution, an immiscible gas phase, and carbonate minerals
- Changes in formation water composition
- Mineral precipitation and dissolution
- Changes in reservoir hydraulic properties

Simulation Result: Reactive Transport

Simulation to interpret reactive and conservative tracers

Normalized aqueous tracer concentration between first CO2water flood transition.

Gas saturation between first CO2water flood transition.

Simulation Result: Reactive Transport

Simulation to interpret reactive and conservative tracers

2x refinement in x- and y-directions around #13-10a, #13-6, #13-12, #13-14, #13-16 for aqueous tracer experiment with injection 2x refinement in x- and y-directions around #13-10a, #13-6, #13-12, #13-14, #13-16 for aqueous tracer experiment with injection

Simulation Working Group: Achievements

- MVA Design
- Storage Forecasts
- Risk Assessment Basis
- Selection of on-going Simulation work
 - Porosity and Permeability distribution
 - Fault Permeability
 - History Matching
 - Production Forecasting

Jan 2016

Jan 2015

S

P

- Simulated

Jan 2014

Observed

Date

Outline

- Introduction to the SWP
- Introduction to Farnsworth Unit
- Major tasks:
 - Geologic Characterization
 - MVA
 - Simulation
 - Risk
- Conclusions and ongoing work

Risk Working Group Goals

Risk Management Planning

Risk Identification (Risk Registry)

Oualitative Risk Analysis

- Ouantitative Risk Analysis
- Risk Response Planning
- Risk Monitoring and Control

Task 1

Overall risk management plan including

- Coordination with other working groups.
- Roles and responsibilities of each personnel
- Budget assignment
- Timing & frequency of risk assessment tasks
- New elements for the risk registry and its potential impacts

Task 2

- Identification of specific risk : features, events, and processes (FEPs)

Risk Result - Risk Source Assessment (Task 2)

- Identification of specific risk : features, events, and processes (FEPs)
- 2014
 - Web-based online workshop (Jan. 13 and 16, 2014)
 - Total 405 FEPs identified
 - 23 project experts evaluated 79 initial FEPs, and generated & evaluated 24 new FEPs

• 2015

- Email survey during (May ~ August 2015)
- 15 project experts evaluated top 50 FEPs of 2014
- 2016
 - Web-based online risk workshop on Sep. 1, 2016
 - 15 project experts and 5 students participated to re-rank 69 FEPs (2 new in 2016, 46 from 2015, and 21 from 2014 black swans)
 - Likelihood for avg. S_{bg} was collected separately via email survey (September 2016)
 - Expertise of individual participants was identified in 7 FEP groups and used for ranking and analysis

Risk Result – Qualitative Analysis (Task 3)

- Provide quantitative information on the risk

- Explicit treatment of uncertainties
- Perform probabilistic assessment due to the uncertainty
- Response Surface Method combined with Monte Carlo samplings

Arsenic Mobilization due to CO₂ Leakage (Xiao et al., 2017)

Uncertainty Analysis of Trapping Mechanism at FWU using ROMs

Risk Analysis and Response-surface-based Economic Model

- Polynomial Chaos Expansion, Xiao et al. (2017), Arsenic mobilization in shallow aquifers due to CO2 and brine intrusion from storage reservoirs. Sci. Rep. DOI:10.1038/s41598-017-(PCE) 02849-z

S

Jia et al. (2016), Probabilistic Risk Assessment of CO2 Trapping Mechanisms in a Sandstone CO2-EOR Field in Northern Texas, USA. GHGT-13. 2016 November 14-18, Lausanne, Switzerland

Dai et al. (2016), CO2 Accounting and Risk Analysis for CO2 Sequestration at Enhanced Oil Recovery Sites. ES&T P

Southwest Regional Partnership on Carbon Sequestration

Risk Assessment: Accomplishments

- Annual Risk Identification (2014, 2015, 2016)
 - 2014: Identified total 405 FEPs
 - 2015: Evaluated top 50 FEPs
 - 2016: Re-ranked FEPs, evaluated likelihood for avg. S_{bg} (best guess severity)
- Qualitative Risk Analysis
 - Updated the risk registry and identify interactions between FEPS
 - Identified the risk factors for the quantitative risk analysis
 - Constructed the process influence diagram for quantitative risk analysis
- Quantitative Risk Analysis
 - Arsenic mobilization due to CO2 leakage
 - Uncertainty analysis of trapping mechanism at FWU using reduced order models
 - Risk analysis and response-surface-based economic model

Conclusions and Ongoing Work

- 620,000 tonnes stored since October 2013
- 1,050,000 tonnes stored since November 2010
- 92.2% of purchased CO₂ still in the system

- Average monthly oil rate increased from ~3,500 to ~65,000 BBL's in first 4 years of CO₂ Flood
- Initial production response within 6 months

Conclusions and Ongoing Work

- The Southwest Partnership's demonstration project at Farnsworth field highlights enhanced recovery with ~92% carbon storage
- Extensive characterization, modeling, simulation, and monitoring studies have demonstrated long term storage security
- Continuous geologic characterization;
- Annual updated geo-model;
- Continuous history match;
- Continuous monitoring (ongoing);
- New risk registry and quantitative assessment of PDFs and CDFs for top FEPs;
- Effective best practices for CCS include an effective MVA program
- To date and after nearly 3 years of monitoring no leaks to the atmosphere, ground water, or secondary reservoirs have been detected at Farnsworth using a wide array of detection technologies

Characterization Working Group

Milestones Remaining Milestones:

Two remaining geomodel updates to include

- refined characterization of faults from tracer studies and associated simulations
- Correlation of geologic facies to acoustic impedance inversion results of the baseline 3D surface seismic survey
- Results from fluid-rock interaction data from lab studies at NMT and Sandia

Characterization

Geologic controls on Hydraulic Flow Units

[A] HU1 Porosity occluded by calcite cement

[B] HU3 Intra-granular porosity dominant, lacks interconnected pore networks

[C] HU5 Lack of inter grain cementation enables better flow paths

[D] HU8 abundant macroposity creates great flow paths

ATIONAL

NOLOG

SPE-180375-MS • An Improved Approach for Sandstone Reservoir Characterization • Dylan Rose-Coss

Characterization – Hydraulic Flow Units

HFU 8 – best single phase Φ, K

- Porosity spaces are fairly unimodal in size and moderately well-sorted
- Pore networks are fairly well connected.
 HFU 8 rendering from micro-CT scan

HFU 1 – lowest single phase Φ, K

- Porosity spaces are generally bimodal, with some large pores and much clayfilled microporosity
- Pore networks are poorly connected

HFU 1 volume rendering, with macropores (green) and clay-filled pores plue)

Skeletonized pore network – lines are through medial axis of pores.

P

Pore image skeletonized along medial axes showing macropores and clay-filled micropores

Southwest Regional Partnership on Carbon Sequestration

Characterization – HFUs → Relative permeability

- Low apparent endpoint perm for the lower HFUs is likely due to change in capillary number. Viscous forces dominate under experimental conditions for higher HFUs; capillary forces for lower
- Higher degrees of heterogeneity lead to higher amounts of residual trapped scCO₂. Residual CO₂ amounts range in saturation values from 10-15% in the tested HFUs
- HFUs exhibit mixed-wettability and lower value HFUs contain most of the residual oil. Higher HFUs represent fast paths that may thwart efforts at broad sweep efficiency of EOR

S

P

Characterization – Reservoir Modeling

Upper surface of the Morrow B zone showing distribution of hydraulic flow units binned using R35 values

Up-scaled porosity values extrapolated and modeled as a function of hydraulic flow units

Relative permeability experiments

Conducting experiments on cores from the eight different hydraulic flow units of the Morrow B Formation using brine-CO₂, oil-brine, and oil-CO₂ fluid pairs Sandia National Laboratories is using synthetic fluids, and New Mexico Tech is using formation fluids = 71°C, 4200-4800 psi pore fluid pressure, ~7500 psi confinement pressure

Fluid-rock experiments

Flow-through experiments at New Mexico Tech – CO₂-rich brine injected into Morrow B Formation cores with different carbonate cement compositions at 71°C, 4200 psi pore fluid pressure, and 5000 psi confinement pressure Mechanical tests (ultrasonic and Brazilian tests) at Sandia National Laboratories are used to identify impact of fluid-rock interaction on core mechanical properties

Simulation: Design, Forecasts, Risk

- Simulation of production/storage history matching of primary, secondary, and tertiary recovery provides some <u>calibration</u>
- Calibrated simulation used for <u>predictions</u> of future and CO₂ storage in the reservoir;
- <u>Uncertainty estimates</u> are critical for forecast context and risk assessment; relative permeability is paramount
- <u>Forecasting potential impacts</u> (risk FEPs) via coupled thermal, geochemical and geomechanical processes;
- Fully-coupled, full-scale simulations used to calibrate reduced order models for <u>uncertainty quantification</u>, risk assessment and <u>optimization</u> for ongoing forecasts.

Focus Area: Relative Permeability

- CMR inversion
 - Data processing
 - Bootstrapped error metric
 - Adaptive noise T₂ inversion
- CMR interpretation
 - Calibration for permeability
 - Pore-scale modelling using µCT
 - Multi-phase interpretation tool
- Relative permeability
 - Stress-dependent in triaxial instrument
 - Small plugs →small fluid volume
 - Effluent analysis using benchtop NMR

CMR log analysis

NATIONAL ENERGY TECHNOLOG LABORATOR

Focus Area: Relative Permeability

Uncertainty Estimation: Impact of choice of three-phase relative permeability model on storage forecasts

P

S

Morrow Sandstone relative permeability curve from the Unocal 1988 reservoir simulation study. Six targeted synthetic relative permeability curves each assigned to hydraulic flow units

Focus Area: Relative Permeability

Example Result: Synthetic Relative Permeability Models

Pore-scale modeling

Relative permeability information

Raw CT image

- Inputs for reservoir simulation
- Compliment laboratory studies
- Flexible for statistical analysis

Micro CT imaging as input

- Extract pore matrix
- Cost-effective
- Multi-thresholding for pore matrix
- Alternative to network approximation

Pore matrix threshold

Simulation: Design, Forecasts, Risk

- Simulation of production/storage history matching of primary, secondary, and tertiary recovery provides some <u>calibration</u>
- Calibrated simulation used for <u>predictions</u> of future and carbon dioxide storage in the reservoir;
- <u>Uncertainty estimates</u> are critical for forecast context and risk assessment; **relative permeability is paramount**;
- <u>Forecasting potential impacts</u> (risk FEPs) via coupled thermal, **geochemical** and geomechanical processes;
- Fully-coupled, full-scale simulations used to calibrate reduced order models for <u>uncertainty quantification, risk</u> <u>assessment and optimization</u> for ongoing forecasts.

Example Risk Identification - Risk Source Assessment (Task

S

Risk Rankings 2014, 2015, and 2016

FEP No.	FEP	Rank 2016 3wt	Rank 2015 3xWt	Rank 2014 wKSY2b
F22	Price of oil (or other related commodities)	1	1	6
F63	CO2 legislation	2	18	29
F66	Accidents and unplanned events	3	8	18
F19	CO2 supply adequacy	4	7	2
F24	Operating and maintenance costs	5	3	7
F38	Simulation of fluid dynamics	6	17	15
F23	EOR oil recovery	7	2	37
F34	EOR injection and production well pattern and spacing	8	4	45
F46	Blowouts	9	26	8
F41	Severe weather	10	#N/A	84
F12	EOR oil reservoir heterogeneity	11	11	19
F43	Ignition of flammable gases or liquids	12	#N/A	72
F01	Caprock lateral extent and continuity	13	#N/A	80
F18	Data acquisition conflicts	14	#N/A	51
F10	Reservoir exploitation	15	#N/A	97
F65	On-road driving	16	28	35
F20	Competing project objectives	17	42	46
F35	EOR early CO2 breakthrough	18	5	25
F64	Release of compressed gases or liquids	19	13	3
F47	Operator error in pipeline operation	20	49	31
F44	Seal failure	21	14	22
F37	Simulation of coupled processes	22	19	5
F40	Modeling and simulation - parameters	23	36	1
F53	Defective equipment	24	16	48
F36	Simulation of geomechanics	25	6	9
F48	Injection well components	26	41	33
F49	CO2 containing H2S	27	21	13
F61	Leaks and spills (related to oil and chemicals other than CO2)	28	23	44
F13	Reservoir heterogeneity	29	15	16
F31	Fault valving and reactivation	30	#N/A	57
F26	Execution strategy	31	9	21
F54	Well lining and completion	32	31	38
F29	Competition	33	12	49
F05	Fractures and faults (CO2 leakage through new or existing fractures or faults)	34	#N/A	90
F04	Seismicity (natural earthquakes)	35	#N/A	101
F14	Geomechanical characterization	36	32	4
F28	Operator training	37	#N/A	62
F59	Permit modifications	38	24	40
F16	Seismic method	39	25	12

- Triple-weighted expert ranking
- Most FEPs have maintained roughly consistent positions in multiple years.
 - Top ranked FEPs are mostly programmatic/non-technical risks related to project management, permitting/safety, and site.
- Re-included FEPs (unlikely but high severity) from 2014 survey.
 - ✓ Some of them shows high risk in 2016 (#10, #12 ~15)
 - Project operations, progress, and experience over time

Example Risk Result – Qualitative Risk Analysis (Task 3)

- Update the risk registry and identify interactions between FEPS

- Identify the risk factors for the quantitative risk analysis
- Construct the process influence diagram (PID) used to develop scenarios for quantitative risk analysis

Risk - Previous Work and Ongoing Studies

	Independent Variables (Uncertain Parameters) FP, ZD	WJ Dependent Variables	Comments /Suggestions
CO ₂ Storage	Reservoir properties (porosity & permeability, Kv/Kh ratio) Relative permeability (e.g. irreducible water saturation)	Amount of CO ₂ stored (or CO ₂ recovered or Net CO ₂ stored) Early CO ₂ Breakthrough time ZD	P, ZD
	WAG (including well pattern and spacing, and injection rate)	CO ₂ Retention (or residence) WJ	
	CO ₂ miscibility (e.g. minimum miscibility pressure)	CO ₂ Injectivity reduction (Net CO ₂ injection amount)	
	Boundary conditions		
	Model uncertainty (e.g. simulation of coupled processes,	WJ	
	simulation of fluid dynamics)	CO ₂ storage capacity loss	
	CO ₂ impurity	- Amount of CO ₂ mineral trapping	
	Reservoir depth and thickness	- Mineral alteration and porosity evolution	
	Initial water, oil and gas saturations FP, ZD	AOR (CO ₂ plume size acpressure buildup)	
	Mineralogical composition		
		EP 7D	
Oil Recovery	Reservoir temperature	Oil production	
	Reservoir pressure	Water cut (or net water injection)	
	Oil composition, gravity	Gas (CH4) production ZD	
	Ongoing Study	ED.	
Geomechanics	Fault density and distributions	Pressure Buildup	
	Stress and mechanical properties	Induced seismicity (seismic magnitude)	e.g. Probability of inducing an earth quake of magnitude 2
	Coefficient of friction (fault properties)	Injection-induced faults reactivation	
	Caprock geomechanical properties		
	Mechanical processes and conditions		
CO ₂ Leakage	Caprock geometry (discontinuity) & heterogeneity	pH change in the overlying aquifer	
	Caprock capillary entry pressure	CO ₂ concentration or total carbon concentration	
	Initial water chemistry TX	Heavy metal concentration	
	CO ₂ migration (point & non-pont source)	TDS change in the overlying aquifer	
	Distributions of leaky wells	Trace metal mobilization	FP: Feng Pan SL: Si-Yong Lee
		CO ₂ migration through caprock	TX: Ting Xiao
		Caprock sealing quality evolution (porosity change)	WJ: Wei Jia ZD: Zhenxue, Dai
			20.20GIAUC Da

S

P

W

Risk - Risk Response Planning (Task 5)

MVA – Methods

ECHNOLOGY ABORATORY

Detecting CO₂ and/or brine outside Reservoir:

- Groundwater chemistry (USDW)
- Soil CO₂ flux
- CO₂ & CH₄ Eddy Covariance
- Aqueous- & Vapor-Phase Tracers
- Self-potential (AIST)
- Distributed Sensor Network (OK State)

Tracking CO₂ Migration and Fate:

- In situ pressure & temperature
 - Distributed temperature array
- 2D/3D seismic surveys
- VSP

P

W

S

- Cross-well seismic
- Passive seismic
- Fluid chemistry (target reservoir)
- Aqueous- & Vapor-Phase Tracers
- Gravity surveys (AIST)
- MagnetoTelluric (AIST)

Example MVA Result – Flux Tower

CO₂ & CH₄ Eddy Tower

- Continuous, wide-area coverage and point-source leak detection.
- FWU Eddy Tower deployed at 13-10A data shed in May 2015 (for ~1 month).
- Continuous acquisition of CO₂ and CH₄ and wind data.
- Exploratory statistics and data filtering methods.
- Examination of diurnal and daily trends.
- Probability estimates of leak source(s).

Daily trends (aggregate hourly averages) of CO_2 (top) and CH_4 (bottom)

P

S

Example MVA Result – Flux Tower

CO₂ & CH₄ Eddy Tower

- Eddy covariance methods undergoing predeployment testing at Univ. of Utah.
- Point source detection of CO₂ and CH₄.
- Release from natural gas cooking vent (lunch) and methane-powered buses (evening).

University of Utah Experiment Site

NATIONAL

P

W

S

- Conditional Bivariate Probability Functions (CBPF):
- 99th percentile concentration.
- Plots probability that high concentrations occurred in a specific direction or "bin" of degrees at different wind speeds.

2.08

2.04

SWP MVA – VSP

3D VSP conducted in 2014 (baseline), 2015 (repeat 1), 2016 (repeat 2)

- Detailed Characterization near injectors •
- Monitor the evolution and image CO₂ plume. •
- Contribute to model verification. •

Processed VSP: NRMS amplitude attribute (7600 - 8100 ft)

Baseline VSP to 2015 VSP

Baseline VSP to 2016 VSP

SWP MVA – CO₂ Accounting

- FWU storing approximately 10,000-20,000 metric tons per month
 - Over 90% of purchased CO₂ has been stored (balance due to upsets and flaring)

