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Benefit to the Program 

• As CO2 storage options are being evaluated in 
the United States, the possibility of utilizing 
offshore formations in the GoM is being 
considered. 

• To mitigate shallow hazards in deepwater Gulf of 
Mexico, foamed cement systems are 
recommended by the API 65.

• Previous in situ experiments show that the 
cement, host rock and/or casings result in 
alteration that may compromise wellbore 
integrity.



Project Overview:  
Goals and Objectives
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• Evaluate the geochemical and 
geomechanical impacts of 
foamed cement due to 
interactions with CO2-saturated 
brine at subsurface conditions 
typical in the GoM. 

• To provide science and 
guidance on the risk associated 
with carbon storage in regions of 
the GoM where foamed cement 
use is common.



Technical Status - Methods
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1. Generated atmospheric 
samples using API RP 10 B-
4 procedures 

– Class H neat (base density)
– 3 Foam Qualities (10%, 

20%, 30%)

In situ Cure & Exposure
1. 28 day cure at atmospheric 

conditions
2. Immersed in 0.25 M NaCl brine
3. Exposed to SCCO2 (28.9 MPa, 

50°C) for 7, 14, 28, 56 days, 6 
months

Visualization 
1. Multi-scale Computed 

Tomography (CT) Scanning 
2. Scanning Electron Microscopy 

Mechanical testing 
1. Porosity, permeability and 

strength measurements 
– Young’s modulus
– Poisson’s ratio

Geochemical
1. XRD
2. ICP-MS/OES
3. SEM-EDS

Data Sets Analysis



Technical Status - Results
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The 30% foam 
quality cement ~27x 
alteration as 
compared to neat 
cement.  

The 20% foam 
quality ~17x more 
alteration than neat 
cement. 

The 10% foam 
quality similar 
alteration to neat 
cement.

Total alteration 
depths in the neat, 
10%, 20% and 30% 
samples were 0.31, 
0.10, 5.39, and 8.35 
mm respectively. 

SEM backscatter image with of unreacted and reacted (56 days) 
foamed cement of variable foam qualities (neat, 10%, 20%, and 
30%) overlain with elemental maps [Ca- blue, Si green]. Scale 

bar is 3 mm. Cracks are likely due to sample prep.



Technical Status - Results
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The 10% foam quality 
cement showed evidence 
for alteration after 7 days

Alteration zone and 
evidence for redistribution 
of Ca, Na, Si, and Cl along 
the outer edge of the 
cement core 

Elemental maps show the 
detrital outer silica rind as 
other cations are pulled 
into solution, a 
carbonation zone, and a 
Ca-leached zoneSEM backscattered images of 10% unreacted (top 

row) and 7-day reacted (bottom row) cement. Center 
and right images in each row show the distribution of 

Ca, Na, Si, and Cl in the cement. 



Technical Status - Results
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• The bubbles in 
the alteration 
zone are filled 
with calcium 
carbonate 
crystals

• Illustrates how 
carbonation 
alters pore space 
by precipitation

SEM backscattered images of reacted (56 days) foam 
cement samples with 10% (A-C) and 20% (D-F) 

foam quality examining the changes in pore space.
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• The permeability of the cement exposed to SC-CO2 for 56 days decreased by 4.89%, 71.22%, 49.22% for foam 
qualities of 30%, 10% and neat respectively.

• The permeability of the 20% foam quality sample had an increase of 4.71%. The increase in the 20% or the 
significant decrease in the 10% will require further study to determine if there are statistical changes.

• The overall trends for porosity show a more stable array of measurements over the entire exposure time. The 
porosity decreases over the length of the experiment for each foam quality. 

• The porosity for the foamed cements decreases by 7.42%, 9.37%, 26.75%, and 15.03% for the 30%, 20%, 10%, 
and neat cement, respectively. 
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• The mechanical characteristics of these cements show little change in regards to SCCO2 exposure. 

• The unreacted cement samples show a decrease in Young’s modulus with increasing amounts of entrained air.  
This is consistent with our previous studies. 

• The Young’s modulus for all reacted samples over the course of the 56 days of exposure increased.  The neat, 10% 
20%, and 30% increased roughly 3.48%, 37.95%, 20.29%, and 18.24% respectively. Indicating that long term 
exposure to SCCO2 can alter the cements ability to withstand deformation. 

• All Poisson’s ratio values increased over the exposure time except for those associated with the 30% foamed 
cement. 
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Project Summary
• The microstructure (bubble size distribution) 

of the foamed cement has a significant 
impact on the alteration rate of CO2

• The CO2 alteration also has an impact on the 
microstructure… essentially mineral 
precipitation in the “bubbles” of the foamed 
cement.

• Next steps include: 
1. Modeling component to predict the changes 

in foamed cement properties.   
2. Experimental investigation of SCCO2

saturated brine flow through foamed cement, 
foamed cement fractures, and along casing-
foamed cement microannulus

10

170,000 individual bubbles identified in 
1 cm3 subsample of a 10% Foam 

Quality cement



Accomplishments to Date
• Historical - FY 16

– Pre- Post physical properties completed
– Pre-Post CT scans completed

• Current - FY 17
– SEM-EDS analysis completed
– CT image analysis completed
– Mechanical properties near complete (6 month samples)
– TRS written and published online
– CCUS 2017 Conference Poster presented
– Access database for the CO2 cement mechanical and physical properties is 

complete and uploaded

• Future - FY 18
– Continued evaluation of the impact of injected CO2 on the integrity of 

foamed cement.
– Correlation of chemical and mechanical alteration 11



Synergy Opportunities
– Wellbore integrity cross-cuts across all of NETL’s 

portfolios:
• Offshore
• Onshore (UNC or otherwise)
• CO2 Storage

– Wellbore integrity teams consist of engineers 
(mechanical, petroleum, environmental), geologists 
(geophysics, geochemistry), material scientists, fluids 
specialists, modelers, etc.

– Issues include corrosion (steel components, cement), 
mechanical, water, cement chemistry, cement 
mechanics (thermal & pressure cycles), reservoir, etc.

– Everything we learn from one wellbore integrity project 
can be applied to the other ongoing projects. 12



QUESTIONS?
Thank you

13



Appendix
– These slides will not be discussed during the presentation, but 

are mandatory.

14
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Benefit to the Program 

• As CO2 storage options are being evaluated in 
the United States, the possibility of utilizing 
offshore formations in the GoM is being 
considered. 

• To mitigate shallow hazards in deepwater Gulf of 
Mexico, foamed cement systems are 
recommended by the API 65.

• Previous in situ experiments show that the 
cement, host rock and/or casings result in 
alteration that may compromise wellbore 
integrity.
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Project Overview:  
Goals and Objectives

• Evaluate the geochemical and geomechanical impacts of 
foamed cement due to interactions with CO2-saturated 
brine at subsurface conditions typical in the GoM. 

• To provide science and guidance on the risk associated 
with carbon storage in regions of the GoM where foamed 
cement use is common.



Technical Status - Conclusions
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• Foamed cement is significant in that it is commonly used in the Gulf of Mexico and 
that the microstructure (e.g. BSD) could highly impact the rate of alteration. 

• This study shows that foam quality impacts rate of alteration: 
– likely influenced by bubble size distribution. 
– higher foam quality cements displayed a greater degree of alteration as compared to 

lower foam quality cements. 
• Exposure to SCCO2 appears to alter pore geometry:

– The 30% foam quality cement showed a 25% decrease in pore area after 56 days.
– The change in pore area is likely result of secondary mineralization (calcium carbonate 

precipitation).

*It is important to note that all of these results were based on atmospheric-generated foamed 
cements. 
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Organization Chart

• Dr. Circe Verba

• Dr. Nik Huerta

• Dr. Dustin Crandall

• Mr. Rick Spaulding

• Dr. Scott Montross

• Mr. Jim Fazio

• Mr. Bryan Tennant

• Dr. Barbara Kutchko

Structural Materials 

Geophysics 

Materials Characterization 

Biogeochemistry 

Geology & Geospatial

• Pittsburgh Geomechanics Laboratory: 
Chandler Engineering Waring Blenders 
(cement generating equipment), 
AutoLab, He-Porosimeter, and N2-
Permeameter, various rock saws, and 
coring equipment

• Morgantown CT scanner laboratory, 
Image processing techniques (high 
end computers & software needed for 
image analysis) 

• Scanning Electron Microscopes, 
Sample preparation facilities (i.e. 
polishing wheels and supplies); X-Ray 
Diffraction facilities

• NETL-Albany High Pressure 
Immersion and Reactive Transport 
Laboratory

• Scanning Electron Microscopes, 
Sample preparation facilities (i.e. 
polishing wheels and supplies); X-Ray 
Diffraction facilities

Project Participants NETL Teams Utilized
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Chemical and pH gradients

• Formation of CaCO3-rich layer 
(zone 2) creates new, dense 
phase

• As this phase grows, slower 
diffusion rates are observed and 
penetration decreases with time.
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