National Risk Assessment Partnership Containment Assurance

Elizabeth Keating Los Alamos National Laboratory

U.S. Department of Energy National Energy Technology Laboratory Mastering the Subsurface Through Technology Innovation, Partnerships and Collaboration: Carbon Storage and Oil and Natural Gas Technologies Review Meeting

August 1-3, 2017

Presentation Outline

- Project goals
- Technical Status
- Accomplishments to Date
- Lessons Learned
- Synergy Opportunities

National Risk Assessment

Partnership

Managing environmental risk and reducing uncertainties for CO₂ storage sites

Phase II tasks

- Containment assurance
- Induced seismicity risk
- Strategic monitoring for uncertainty reduction
- Demonstration of Risk Assessment Tools and Methodologies using Synthetic and Field data
- Addressing critical questions related to Assessment and Management of Environmental Risk at CO₂ Storage Sites

Containment Assurance task goals

1. Address key scientific questions related to leakage risk and mitigation

- How does CO₂ and brine flow through damaged cement in wellbores?
- How do caprocks response to stress?
- What are viable strategies for finding leaking wells and killing blow-out wells?
- What are appropriate risk-based frameworks for pressure management?

Containment Assurance task goals

2. Develop software tools to support decision making at CCS sites, with capability to

- Quantify the risks associated with CO₂/brine leakage
- Update risk assessments with monitoring data
- Evaluate options for risk mitigation
- Assist in risk-based design of monitoring networks

Technical Status

- Seal integrity
- Wellbore integrity
- Leak mitigation
- Integrated risk assessment

Technical Status

Seal integrity

Bill Carey, Dustin Crandall, Preston Jordan, Ernest Lindner, Nataliia Makedonska, Rajesh Pawar

Shearly, you must be joking

Dustin Crandall, Jonathon Moore

Los Alamos Bill Carey, Luke Frash

Tim Kneafsey, Seiji Nakagawa

March 14th, 2017

Distinctly different behavior of fractures undergoing shear, dependent on the rock type. More clay -> more smearing -> lower permeability after shear

Characterization of CO₂ leakage through fractured AZMI or

Rajesh Pawar Natalija Makedonska

Storage Reservoir

caprocks

Not all fractures contribute to flow

Operational scenarios affect CO₂ movement

> Fractures primarily contributing to flow are represented with red color

Technical Status

Wellbore integrity

Susan Carroll, Shaoping Chu, Dylan Harp, Jaisree Iyer, Preston Jordan, Kenton Rod, Pratanu Roy, Nik Huerta

lamos

LABORATORY

Developed first-in-kind model that forecasts changes in well integrity by including chemistry, mechanics, and flow Susan Carroll, Jaisree Iyer, Stuart Walsh

Multi-physics simulations of CO_2 and brine flow along a fracture

Damage zones of concern for a 10 MPa overpressure

Developing a New ROM that incorporates impact of chemistry and mechanical alteration 11

- Ubiquitous, at least in oil and gas basins
- A large proportion are plugged above the base of USDW, particularly prior to ~1981 when the Safe Drinking Water Act was implemented
- Transmissivity unknown could be open, gelled, or sealed due to squeezing or collapse
- Research needed to constrain this substantial unknown (epistemic risk)

Relative Permeability for Water and Gas through Fractured Cement

Kenton Rod

X-ray Computed Tomography (XCT)

Technical Status

Leak Mitigation

Curt Oldenburg Lehua Pan Abdullah Cihan

Development of risk assessment and mitigation approaches for leakage

Objective: Using the risk map-based risk assessment approach (*Siirila-Woodburn et al.*, 2017), assess how the risks for leakage evolve with time by applying mitigation options:

At each **point (red dot)**, simulate brine leakage deterministically for a range of well permeability values ϵ [k_{min} , k_{max}] and then calculate plume sizes in USDW with salinity higher than some threshold (e.g. secondary MCL of TDS)

extent (red) in the first Vedder Sand, Kimberlina

Mitigation of Well Leakage

Curt Oldenburg, Lehua Pan

Conceptual model of leakage pathway in gap due to cement plug failure

We assume that the gap extends along 50% of the perimeter of the well.

The first temperature signal is from upward flow of warm water. Then gas breaks through leading to a big drop in temperature because of expansion cooling.

The temperature signal is very weak when the aperture is below 1 mm (< 1 °C) due to very small leakage rate. 16

Temporal patterns of P, T, and gas saturation may provide detectable signatures of low-flow-rate leakage in shallow subsurface around abandoned well

Technical Status

- Integrated risk assessment and risk management OpenIAM-CS Seth King (lead), Diana Bacon,
 - Seth King (lead), Diana Bacon, Dylan Harp, Veronika Vasylkivska, Cheryl Yang, Xiao Chen, YQ Zhang

Phase II Integrated Assessment Model Development Goals

- risk assessment and risk management
- inform monitoring design
- assess concordance between models and field data
- evaluate leak mitigation performance
- update risk assessment with information from monitoring

Phase II Integrated Assessment Model Code design

- Transparent, open-source, easily extensible
- Python-based
- Component models:
 - Built-in generic models
 - Tools for incorporating results from detailed sitespecific models

Open-IAM-CS Prototype example

Leakage scenario

Probabilistic leakage risk calculations

40

50

30

Parametric study

Risk assessment update using monitoring data

 10^{-11}

10

20

Time, t (years)

New reduced-order model development Pressure plumes in intermediate zones

Shaoping Chu, Dylan Harp, Rajesh Pawar

Accomplishments to Date

- 14 papers have been published in the past year
- Multi-lab study on the effectiveness of various types of seals is complete; report in preparation
- New reduced-order models are in development (wellbore leakage, pressure plume in AZMI layers)
- Phase II Integrated Assessment Model Design Basis Document is complete
- Prototype OpenIAM-CS is up and running.

Remaining challenges

- Coupled processes continue to be challenging
 - Coupled steel corrosion, cement carbonation and CO₂ flow (wellbore integrity)
 - Coupled mechanical deformation and carbonation in CO₂ alteration of cement (wellbore integrity)
 - Coupled fracture mechanics, chemical alteration and CO₂ flow (caprock)
- Experiments are needed
 - to define relative permeability models for CO₂-brine mixtures flowing through fractured wellbore systems.
 - to define the relationship between CO₂-brine saturation and the extent of chemical reaction with cement.
- Knowledge gaps still exist in understanding and predicting post-injection processes, partly due to lack of long-term data

Synergy Opportunities

- Collaboration with CarbonSafe projects
- Looking for beta testers for the Phase II Integrated Assessment Model (2018)
- Collaboration with EPA, exploring ways that the IAM could be used to
 - support the well permitting process
 - to enhance operator/regulator communication

Thank you!

NRAP tools open meeting: Today 3:30 – 6:30 Grand Station III-V

Benefit to the Program

The motivating goal of NRAP is to develop science-based methodologies and tools for calculating risks at any CO_2 storage site while providing necessary scientific and technological advances to support that methodology.

- Software tools for calculating and managing risks are being developed with expanded capabilities and improved transparecy
- Fundamental scientific understanding is being advanced
 - Well integrity
 - Well leakage mitigation
 - Seal integrity
 - Pressure management

Milestones

Python based OpenIAM-CS development Timeline

Phase II NRAP Organizational Structure

Bibliography

- Carroll, S. A., Iyer, J., and Walsh, S. D. C., 2017, Influence of Chemical, Mechanical, and Transport Processes on Wellbore Leakage from Geologic CO2 Storage Reservoirs. Account in Chemical Research (accepted).
- Carroll, S., Carey, J.W., Dzombak, D., Huerta, N., Li, L., Richards, T., Um, W., Walsh, S., and Zhang, L., 2016, Review: Role of chemistry, mechanics, and transport on well integrity in CO₂ storage environments, International Journal of Greenhouse Gas Control, 49, 149–160, 2016.
- Chen, X., Iyer, J., Walsh, S., and Carroll, S., 2017, Simulations and reduced order modeling of CO₂-Cement systems. Mastering the Subsurface, Pittsburgh, Aug 1 3, 2017
- Cihan, A., Birkholzer, J.T., Trevisan, L., Gonzalez-Nicolas, A., and Illangasekare, T., 2017, Investigation of representing hysteresis in macroscopic models of two-phase flow in porous media using intermediate scale experimental data, Water Resour. Res., 53, 199–221, doi:10.1002/2016WR019449.
- Crandall, D., Moore, J., Gill, M., and Stadelman, M. (Submitted) CT scanning and flow measurements of shale fractures after multiple shearing events, International Journal of Rock Mechanics and Mining Sciences.
- Harp, D.R., Stauffer, P.H., O'Malley, D., Jiao, Z., Egenolf, E.P., Miller, T.A., Martinez, D., Hunter, K.A., Middleton, R.S., Bielicki, J.M. and Pawar, R., 2017. Development of robust pressure management strategies for geologic CO₂ sequestration. International Journal of Greenhouse Gas Control, 64, pp.43-59.

Bibliography, cont.

- Iyer, J., Walsh, S.D.C., Hoa, y., Roy, P., Morris, J. P., and Carroll, S. A., 2016, A simplified coupled model to quantify the role of chemistry and mechanics on sealing of large scale cement fractures exposed to CO2-rich brine. Energy Procedia, 13th International Conference on Greenhouse Gas Control Technologies, GHGT-13, 14-18 November 2016, Lausanne, Switzerland.
- Iyer, J., Walsh, S. D. C, Hao, Y., and Carroll, S. A., 2017, Incorporating reaction-rate dependence in reaction-front models of wellbore-cement/carbonated-brine systems, International Journal of Greenhouse Gas Control, Vol 59, 160-171.
- Iyer J., Walsh S. D. C., Hao Y., and Carroll S. A., 2017, Two phase flow in CO₂-cement systems Int. J. Greenhouse. Gas Control, submitted.
- Jordan, P.D., and J. Gillespie (2016). Produced water disposal injections in the southern San Joaquin Valley: no evidence of groundwater quality impacts due to leakage. Environmental Geosciences, 23: 141-177.
- P. Roy; P., Morris, J.P., Walsh, S. D. C., and Carroll, S., 2016, Stress state due to cement hardening; NRAP-TRS-III-XXX-2016; NRAP Technical Report Series; U.S. Department of Energy, National Energy Technology Laboratory: Morgantown, WV
- Roy, P., Morris, J.P., Walsh, S.D.C., Iyer, J., Carroll, S.A., Todorovic, J., Gawel, K., and Torsaeter, M. ,2016, Assessment of thermal stress on well integrity as a function of size and material properties, Energy Procedia, 13th International Conference on Greenhouse Gas Control Technologies, GHGT-13, 14-18 November 2016, Lausanne, Switzerland.

Bibliography, cont.

- Siirila-Woodburn, E. R., Cihan, A., Birkholzer, J.T., 2016, The effect of leaky well permeability distribution on probabilistic risk maps in Geologic Carbon Storage, The 13th International Conference on Greenhouse Gas Control Technologies, GHGT-13, 14-18 November 2016, Lausanne, Switzerland.
- Siirila-Woodburn, E. R., Cihan, A., Birkholzer, J.T., 2017, A risk map methodology to assess the spatial and temporal distribution of leakage into groundwater from Geologic Carbon Storage, International Journal of Greenhouse Gas Control, 59, 99-109, ISSN 1750-5836, http://dx.doi.org/10.1016/j.ijggc.2017.02.003.
- Wooyong U., Rod, K.A., and Jung, H.B., 2016, Geochemical alteration of wellbore cement by CO2 or CO2+H2S reaction during long-term carbon storage. Greenhouse Gases Science and Technology 6:1–14 (2016);. DOI: 10.1002/ghg.1595