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+ Foam has been proven to be effective for flood conformance control during WN oo o
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enhanced oil recovery and CO, storage processes. In situ generation of foam 0.14994

serves to block gas migration along high permeability pathways and improves
incomplete vertical sweep due to gravity segregation. This technology is
attractive due to its low water and chemical additives requirements.
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UT in-house parallel compositional reservoir simulator (IPARS) can model both
compositional flow and geomechanics. Advanced three-phase relative
permeability (UTKR3P) and hysteresis (UTHYST) models have been| | red rectangle shows the area of simulation
implemented and coupled with foam models in IPARS to more accurately
simulate WAG and SAG processes.
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