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Cement and CO, Interactions CO, and brine fluxes were calculated over a wide range of parameter space
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= Reaction between cement and carbonated brine results in altered %-4 ’ %w %M
cement layers with different physical and chemical properties. z X 2 : I
3 }5 ) i 5. i
= Reactions can also result in calcite precipitation within the fracture. E : , ’ E : . ! E : \ i BLeakageFluxvs ReservoirDepth
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Logarithmic inputs and outputs yield reduced order models that capture the simulated CO, fluxes
= Two-phase flow model
= Mass balance for brine and CO,. : et B CV Predictions (scaled rmse= 20574e:00, R2= 9.39496.01) OV Eror Histogram
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= Extension of Darcy’s law to multiphase flow: Itogarifthmicf . " .f;;, o —— logarithmic
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= Reaction front model T 3?' .
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= Transport between the fronts is via diffusion: %’,_ H‘?.“‘ ' E
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= Front movement is controlled by diffusion or reaction based on H %
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= Altered cement has lower stiffness, which may also lead to = Quasi-Newton sampling and multivariate adaptive regression splines are used to construct dynamic ROM for CO, leakage rate
i;a‘s?g:]z:et)?llt?lg.f-rr:é?ulrsectzptttiare:xs;fg?’r)gggtit:: mechanical = Our results suggest that, for dynamic ROM, temporal coordinate might need to be separated out from other inputs
= |n the future work, we will compute ROM coefficients for each time step then construct ROM for these time-varying coefficients
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