Introduction

Fluid-driven crack propagation is present in many physical applications (CO₂ sequestration, groundwater contamination, fluid-induced fault activation):

An encased borehole may be vulnerable to many types of fracture/failures in the presence of fluids under high pressures, which lead to leaks.

Motivation

Fluid-driven crack propagation is present in many physical applications (CO₂ sequestration, groundwater contamination, fluid-induced fault activation):

An encased borehole may be vulnerable to many types of fracture/failures in the presence of fluids under high pressures, which lead to leaks.

Coupling

Phase-field - a Variational Approach to Fracture:

\[\Psi(\epsilon, \Gamma) = \int_\Omega \Psi_\epsilon(\epsilon) d\Omega + \int_\Gamma G_c d\Gamma \]

Total Potential = Strain Energy + Fracture Energy

Phase-field approximation of fracture is solved during each time-step by minimizing the fracture energy. It is a preferred model for fracture for several reasons:

- Smooths sharp discontinuities to scalar variable,
- Robustly models branching, initiation, and 3D cracks,
- No need for a-priori location of crack,
- Avoids the need for adaptive mesh refinement.

Two-Way Coupling of Fluid Flow and Fracture:

- High fluid pressures → Fractures
 - Hydrostatic pressure used to update total stress
- Presence of Fractures → Fluid Flow
 - Joint opening used to update permeability
 - Onset of Poiseuille flow within fractures

Results

The results of a numerical simulation in which fluid volume is injected into the bottom left corner of a quarter-symmetric mesh:

- Top Left: the phase-field, or fractures that have propagated
- Top right: the corresponding joint opening of the fractures
- Bottom right: the permeability as a result of the joint opening
- Bottom left: the fluid pressure distribution within the fractures

Contact

Pania.Newell@utah.edu
Yunping.Xi@colorado.edu
(801) 213 3536
(303) 492-8991

Future Work

- Introduce a physic-based relationship between joint opening and permeability
- Implement this coupled system within Kayenta (Sandia cap-plasticity material model)

Results Cont.

Depiction of boundary conditions in a discontinuous (top) and phase-field (bottom) representation of fluids in an arbitrary body.

Table below shows the material and numerical parameters used for the simulation of fluid injection through wellbores. Material parameters are representing limestone.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Young’s modulus</td>
<td>E</td>
<td>10 GPa</td>
</tr>
<tr>
<td>Density</td>
<td>(\rho)</td>
<td>2560 (\text{kg/m}^3)</td>
</tr>
<tr>
<td>Critical Fracture Energy</td>
<td>(G_c)</td>
<td>100 (\text{MPa})</td>
</tr>
<tr>
<td>Fracture Length</td>
<td>(l_0)</td>
<td>0.02 m</td>
</tr>
<tr>
<td>Poisson’s Ratio</td>
<td>(\nu)</td>
<td>0.155</td>
</tr>
<tr>
<td>Biot’s coefficient</td>
<td>(b)</td>
<td>1</td>
</tr>
</tbody>
</table>

Effect of Wellbore Orientation on Joint Opening Magnitude

The maximum joint opening is monitored over time using many fluid volume fluxes in both scenarios. The results, shown below, indicate that the joint opening is strongly correlated with the rate of injection, but not with wellbore orientation.

Figure 1: Figure caption

An encased borehole may be vulnerable to many types of fracture/failures in the presence of fluids under high pressures, which lead to leaks.