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X-ray computed tomography (CT) scanning has the advantage of visualizing in situ pore structure

and fluid distribution within the pore space without opening the porous medium destructively.

Image data from CT scanning can be used as boundary conditions in a pore-scale lattice

Boltzmann (LB) simulator to simulate single- and multiphase flows within the pore space. The

Geoimaging Lab at National Energy Technology Laboratory’s Research & Innovation Center

hosts three CT scanners having different resolution capabilities. Pore-scale LB simulation

capabilities, enhanced by CPU/GPU parallel computing technologies, have been developed to

fully utilize rock image data from the Geoimaging Lab. Two projects are presented in this poster.

The first study investigated the role of proppant compaction and proppant size heterogeneity on

the relative permeability of a propped fracture. Simulation results showed that relative

permeability of the non- wetting fluid phase was more sensitive to the change of effective stress;

non-monotonic change in relative permeability can occur because of nonlinear development of

pore structure and connectivity. High-performance LB simulations were conducted on the Titan

supercomputer and Virginia Tech’s Cascades supercomputing cluster; thus, many more rock

samples can be analyzed given the same processing time. The second was a study focused on

the role Capillary number (Ca) and contact angle have on the multiphase flow properties within a

sandstone reservoir. Simulation results showed that both Ca number and contact angle

significantly influence the relative permeability curves, which regulate multiphase flow during

geologic CO2 injection at the macroscopic scale.

 Under the same effective stress, a proppant pack with a smaller diameter COV had

higher porosity and permeability and smaller fracture width reduction.

 The relative permeability of oil phase was more sensitive to changes in geometry

and stress, compared to the wetting phase.

 Relative permeability changes non-monotonically: when effective stress increased

continuously, oil relatively permeability increased first and then decreased. all

 Both Ca number and contact angle significantly influence the relative permeability

curves. s after the first in each reference are indented.)
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Results

Fig. 1 a) PFC-simulated 16/30-mesh-size proppant assembly of 30 mm × 30 mm × 8 mm under

effective stress of 10 psi, and b) corresponding LB-simulated pressure distribution within the

pore space.

Fig. 2 a) Compressed distance, b) porosity, and c) normalized permeability as functions of
effective stress, d) normalized permeabilities as functions of porosity.

Figure 4. Relative permeability curves determined from pore-scale multiphase LB

simulations for the geometries having a) 5% diameter COV; and b) 19% diameter COV.

Figure 3. Oil phase distributions in steady-state two phase flow observed for diameter 

COVs of a) 5%, and b) 19%, respectively.

Conclusions
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Figure 6. Relative permeability curves determined from pore-scale multiphase LB

simulations within a sandstone reservoir for three contact angles 20 °, 45 °, and 70 °.

(d)

Figure 5. Effective pore diameters for the geometries having a) 5% diameter COV; and 
b) 19% diameter COV.


