INTRODUCTION

Shear strength is crucial in determining the slip of faults. Studies show that natural faults tend to slip at much lower resolved shear stress than laboratory inferred stresses. This weakening of natural faults can be related to chemical alteration of the mineralogy of the reservoir and the corresponding fault zone. Laboratory investigations have explored the effects of CO₂-alteration on the fracture toughness of sandstone (~50% quartz, ~23% illite-smectite clay minerals). Test results (short rod and double torsion tests) of natural sandstone samples with long-term CO₂ alteration retrieved from Crystal Geyser, Utah show significantly lower fracture toughness than adjacent, unaltered samples. Microstructural analysis shows that the Fe-coating (hematite) which commonly serves as cementation between strong tectolitic grains is dissolved after CO₂ bleaching and altered to goethite globules. Interestingly, goethite can form a tribological film with water on surfaces, showing a low friction coefficient of 0.1-0.2. These interesting observations suggest a possible mechanism for a weakening effect in these CO₂ altered rocks, i.e. the Fe-coating, which is altered from hematite cementation to goethite. Although present only in trace amounts, this plays a significant role in determining the frictional strength and stability of the fault zone.

- CO₂ alteration may produce goethite and weaken reservoir rocks and pre-existing faults.
- Weakened rocks may fail/fracture under stress and reactivated faults may slip seismically, or creep.
- What regime will the slip event follow?
- Which slip regime will be beneficial?

Velocity Strengthening

a-b-0 suggests velocity strengthening resulting in aseismic slip and manifest as creep.

Velocity Weakening

a-b-0 suggests velocity weakening brittle response and seismic slip may occur.

HYPOTHESIS

- Pristine faults feature high shear strength, can slip seismically, potentially increasing permeability.
- CO₂ altered Faults are weakened, can slip aseismically, dissipate seismic energy over time, potentially reducing permeability.

OBJECTIVES

- Examine effect of Fe-coating on shear strength of faults.
- Examine effect of Fe-coating on slip stability of faults.
- Examine permeability evolution of faults before/after CO₂ alteration.

METHOD

DISTINCT ELEMENT MODELING

Biaxial Direct Shear Experiments

(1) Constant Velocity
(2) Velocity-stepping

NUMERICAL SIMULATION RESULTS

Shear Strength Evolution

TRANSITION IN SLIP STABILITY

PERMEABILITY EVOLUTION

CONCLUSIONS

- The shear strength of altered faults associated with goethite coating is reduced.
- The weakening effect of the goethite coating does not depend on the concentration of the coating particle once a goethite-dominated effect is established.
- The coating-dominated weakening effect is independent of applied normal stress, implying that coating induced weakening can occur at any stress conditions in the upper Earth crust.
- Slip instability may potentially shift from velocity-weakening to strengthening after alteration. Permeability enhancement is depressed after alteration.

REFERENCES


This work is the result of support provided by DOE Grant DE-FE0002354. This support is gratefully acknowledged.