

Probabilistic Risk Assessment of CO₂ Trapping Mechanisms in a Sandstone CO₂-EOR Field in Northern Texas, USA

Wei Jia^{1,2}, Feng Pan³, Zhenxue Dai⁴, Ting Xiao^{1,2}, Mark White⁵, Brian McPherson^{1,2} ¹Department of Civil & Environmental Engineering, the University of Utah, UT; ²Energy & Geoscience Institute, the University of Utah, UT; ³ Utah Division of Water Resources, UT; ⁴Las Alamos National Laboratory, NM; ⁵Pacific Northwest National Laboratory, WA

(a) The end of simulation (40 yrs.)

Introduction

- Problem CO₂ storage forecasting is affected by uncertainty due to heterogeneity, including permeability and porosity.
- ✤ <u>Goal</u> Quantifying uncertainty of CO₂ storage and evaluating CO₂ trapping mechanisms in a sandstone CO₂-EOR field.
- ✤ <u>Method</u>: Reduced Order Models (ROMs) via Polynomial Chaos Expansion (PCE).

(a)

Model Description

- Farnsworth Unit (FWU), northern Texas
- Morrow B sandstone
- ✤ 28×22×20=12320 cells
- 1 injector-centered fivespot pattern
- 20 yrs. of CO₂-EOR + 20 yrs. of monitoring (no inj./prod.)

Methods

Southwest Regional Partnership on Carbon Sequestration (SWP) under Award

No. DE-FC26-05NT42591. The research of the first author is partly supported

by the Utah Science Technology and Research Initiative (USTAR).

output = M (porosity, permeability)

- CO2 mass distribution in oil phase
- CO_2 mass distribution in supercritical phase CO_2 mass distribution in aqueous phase
- CO_2 mass distribution in aqueous pha
- □ Use **25** Eclipse simulations to "train" the ROMs □ Use the ROMs for simulating **1000** realizations

Results & Discussion

* Predicted by 25 Eclipse Simulations

	Mean	Standard Deviation	Minimum	Maximum
Hydrodynamic trapping (tonnes)	174,760	1,812	170,790	178,330
Oil dissolution trapping (tonnes)	60,970	486	60,240	61,750
Aqueous dissolution trapping (tonnes)	2,740	15	2,700	2,750

Basis Function and An Example of ROM

Key Results

- Hydrodynamic trapping sequesters the most injected CO₂ at the FWU (121,400~166,860 tonnes), followed by oil dissolution trapping (55,303~76,816 tonnes), and aqueous dissolution trapping (1979~2751 tonnes).
- With one five-spot pattern and 20 years of CO₂-EOR, the CO₂ stored in the FWU is between 185,430 tonnes and 239,170 tonnes, demonstrating the significant uncertainty in total CO₂ storage induced by parameter heterogeneity of porosity and permeability.