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Background of Directly Fired Supercritical
CO, cycle

« High plant conversion efficiencies (~52% LHV) with
~100% carbon capture
* Lower electricity cost (by ~15%)

« Supercritical CO, (sCO.,) Is a single-phase working fluid
— No thermal fatigue or corrosion as in 2-phase flow (e.g., steam)

« Compact Systems possible
 Many challenges on sorsrcncaco, N )
combustion to address to -
develop system

— Kinetics
— Dynamics

http://mww.edwardtdodge.com/2014/11/20/sco2-power-cycles-offer-improved-efficiency-across-power-industry/



Overview of the Scientific Problem

« What fundamental combustion properties/knowledge we need
In order to design combustor for sCO, oxy-combustion?

* High temperature (~1100 K) and Autoignition delays
high pressure (~200-300 atm) ~and
inlet condition, severe thermal flame dynamics of jet in crossflow
environment for fuel Injector and Concept of autoignition stabilized combustor*
flame holder
— Mechanical strength (pressure) v Forso”
_ Therma| Strength (COId fue|’ hot fuel injection jets 0, injection jets

process)

— Difficulty to meet 30,000 hours
of operation

— Nickel super alloys are limited (stabilized by actorgnition)

to creep rupture strengths of 41 =) ! .
atm, lessthan 1,280 K~ _____ SRR

Metal support liner
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Distributed reaction zone

Fuel premixing zone
(jet-in-crossflow)

*J.Delimont, A. McClung, M. Portnoff, 2016 sCO2 symposium
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Kinetic Challenges for sCO,-fuel-O, Mixtures

Deviation increases with pressure: knowledge gap
Kinetic models must be validated at regime of interest
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CH,/O,/CO, (9.5%:19%:71.48%) H,/CO/O,/CO, (14.8%:14.8%:14.8%:55.6%)

More intriguing results later !!



Overview of the Scientific Questions and ,,
Proposed Work e\

What is the fundamental combustion properties?

— Experimental investigation of chemical kinetic mechanisms
for sCO, Oxy-combustion (Task 1&2: Ranjan & Sun)

How can we use the kinetic model to design
combustors?

— Development of a compact and optimized chemical kinetic
mechanism for sCO, Oxy-combustion (Task 3: Sun)

What Is the combustor dynamics at this new
condition?
— theoretical and numerical investigation of combustion

Instability for sCO, Oxy-combustion (Task 4&5: Lieuwen,
Menon & Sun)



Task 1: Development of a High Pressure Shock
Tube for Combustion Studies

e How to study autoignition delays at sCO2 Oxy-
combustion condition?
— Why Shock-Tube?
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Task 1: Development of a High Pressure Shock
Tube for Combustion Studies

* Year 1: Design & Fabrication

Key features:
Large internal bore (6 inch or 15.24 cm)
22 m long (=50 ms test time)
Certified to 376 atm
0.2 um surface finish
(electropolishing)
Optical access




Task 1: Development of a High Pressure Shock
Tube for Combustion Studies
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March 2016 April 2016

May 2016
Supporting frame installation



Task 1: Development of a High Pressure Shock
Tube for Combustion Studies

Machining of test section Dead mass metal casing delivering to GT

April 2016



Task 1: Development of a High Pressure Shock
Tube for Combustion Studies

Paintings supporting frame Filling dead mass casing with reinforced concrete

May & June 2016
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Task 1: Development of a High Pressure Shock
Tube for Combustion Studies

* Tube assembled for certification
* Hydraulic Tested at 376 atm
« Sent out for electropolishing

May & June 2016 H



Task 1: Development of a High Pressure Shock
Tube for Combustion Studies

Anchoring supporting frame and dead mass
Installing supporting wheels
Waiting for the arrival of shock tube

July & Aug. 2016
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Arrived!

» After tons of paper work and coordination

Sept. 2016
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Here It IS!

Driven side view Driver side view

Oct. 2016




Test Section
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Mixture Preparation Tank

831

* Magnetic stir to promote mixing

High accuracy Baratrons (0.05% accuracy)
to measure partial pressure for mixture

preparation

16



Task 1: Development of a High Pressure Shock
Tube for Combustion Studies

Basics regarding the shock-tube:

Shock Tuk -+

4 Hig_]h Pressure Low

Rarefaction Fan ' ' 5 ' N == Ts =1000 - 3000 K
— . P: > P,

Time (t)

Locati ab-Frame Incident Shock

) 2 1

Shock tube is ready and
experiments on the way

Task 1 accomplished in year 1 L



Task 2: Investigation of Natural Gas and Syngas
Autoignition in sCO, Environment

Survey of studles of natural gaslsyngas klnetlcs

e Autoignition properties have 1000~
. . | 0 Natural Gas
never been investigated before 8 o Syngas
in region of interest o  CO, effect L
B A > SCO, pot\:ver cycle
. . . iy = 100
« This task will investigate critical £ 8 A
autoignition properties of natural ¢ § |validation pressure
gas and syngas diluted by CO, & effect
In region of interest a 108 o o
: ofo
« Approach for high quality data: ° __validation )
— Repeat eXiSting eXperimentS for 1;3 ®o we ® o 0 000GWD®OW® O ® OO0
validation 0 0.2 0.4 0.6 0.8 1

. e fracti
_ Ramp up pressure to study 002 concentration (mole fraction)

pressure effect

— Ramp up CO, dilute A new regime to explore!
concentration to study CO,

dilution effect
e.g.
E.L. Petersen, et al, Symp. Combust., 1996(26), 799-806 18
S. Vasu, et al, Energy Fuels, 2011(25), 990-997



Task 3: Development of a Compact and Optimized Chemical
Kinetic Model for sCO, Oxy-combustion

Develop an optimized,

Valldated and CompaCt . Initial Generation of Mech I~ Selection
chemical kinetic mechanism | Randomlygenerate several .| Select the good mechanisms
hundreds of mechanisms based on their performance
] of predicting auto-ignition 1
. . _ del etc. /\\
Employ the optimized ( — ™~

mechanism in LES to study

Give Birth to New

combustion stability Optimized Mech | GenerationofMech |-
However, if this generationis Good mechanims can
good enough, we stop “marry” with each other, and
Approach: optimize chemical | iterationandaccept themas - glve rth foanew
kinetic mechanism based on | cstimized mechanism Fenerationof mechanims

experimental data obtained In

task 2. Flow chart of using Genetic

Algorithm to optimize chemical
Explore other methodology: kinetic mechanisms
Bayesian optimization for
better optimization



Task 3: Development of a Compact and Optimized Chemical
Kinetic Model for sCO, Oxy-combustion

Autoignition

« Comparing to existing |
high pressure autoignition (a)$=05
delay data, USC Mech Il 0%}
(111 species) has the best |
agreement!. So it is used
as a starting point for 10}
future optimized
mechanism

Y
=
]

« A 27 species reduced
mechanism? for natural
gas (CH,/C,H;) and
syngas (CO/H,) is
developed

ignition delay (sec)
S B
FS o

ignition delay (sec)

10'2 L

 Comparison of the results 103}
from reduced (marker)
and detailed mech (line).
Solid lines (p = 200atm),

10}

0.7 0.8 0.9 1

: —_ 0.7 0.8 0.9 1
dashed line (p = 300atm) 10001T, (1K) 1000/T, (1K)
92.5% CO, diluted natural 92.5% CO, diluted syngas
gas/O, (CH,:C,H=95:5) gas/O, (¢=1)

A. McClung, DE-FE0024041 Q1FY15 Research Performance Progress Report, SwWRI 20
S.

1.
2. S. Coogan, X. Gao, W. Sun, Evaluation of Kinetic Mechanisms for Direct Fired Supercritical Oxy-Combustion of Natural Gas, TurboExpo 2016



Flame speed (cm)
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Kinetic Model for sCO, Oxy-combustion

Task 3: Development of a Compact and Optimized Chemical

1D Chemkin calculation with reduced model (only USC Il converges)
flame speeds at different pressure conditions of stoichiometric CH,/O,,

with 80% diluent at 1000 K initial temperature
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Multiple solutions when P>25 atm
At 300 atm, how fast flame propagates? What will be observed in

experiments and LES?

Flame speed (cm
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Large flame speed: pulsating flame? Small flame speed: blow out?

Critical for combustor design

21




Task 4: Analytical modeling of Supercritical
Reacting Jets in Crossflow

* Physics based models of

reacting jet in crossflow .
(JICF) ooy s S
— Connect flow dynamics to "
flame dynamics —
— Modeling explicit flame T
position dynamics
e Understanding flow Jet velocity

dynamics of a jet In
crossflow

Analytic model of jet in crossflow



Challenges of Task 4

 Flame response modeling

— Majority of past work has addressed models for premixed flames
« EXxplicit governing equations describing dynamic flame surface evolution (e.g., G
equation)
— Non-premixed flames not well studied
» mixture fraction framework, implicit representation of the flame
* No explicit governing equations for flame position

 Challenges

— Using governing equation for a full-field quantity (mixture fraction) to
develop a governing equation for a given iso-contour of the mixture fraction
solution

« Boundary conditions are important => affect flame

» Results in complicated non-linear governing equations, that require physics
based simplifications

— Flow dynamics for a jet in cross-flow are not easily understood or modeled
* Requires detailed understanding of flow from experiments and LES
» Developing an analytical representation of flow for use in analytical models



Modeling Flame Surface Dynamics

e The non-premixed flame is modeled using the Burke-
Schumann framework
— Governing equation based on the mixture fraction formulation
— assuming fast chemistry but equal diffusivities

1
e R
Do +1

Fuel

ot

 Flame location is based on
the stoichiometric mixing of
fuel and oxidizer
— Stoichiometric 1so-contour

of mixture fraction field (£ =
Zst)

— Example: simple ducted
non-premixed flame with
co-flowing fuel/oxidizer




Analytical Modeling Strategy

%_fHS -VZ=V-(ONZ)

« The mixture fraction and flow-field can be decomposed
Into steady mean (subscript 0) and unsteady
perturbations (subscript 1)

—USUp+U, ; &%+ 2
— Decomposes governing equations into separate equations for
steady state and dynamics (unsteady state)

(UV) % = (V)

0 2
Ll v)a-o (via)=-(hv)z

« Solutions provide description of complete mixture
fraction field



Iso-surface dynamics

* |n aframe of reference (Lagrangian representation) fixed to
the iso-surface, the material derivative vanishes

Dz
Dt Z=2y
* In the observer fixed frame of reference, the equation
translates to: 0z r
= +(u-vz) =0
5’[ Z=2 2 =2y

« The front velocity (u;) Is a combination of the ambient flow and
the inherent front propagation velocity:

az V- (oNzZ)
Ez:zst +(u 'VZ)‘Z% =S (Zs’t)|vz|zz‘z“ (&)= vz

Z=Zst

Z :Zst

— The equation is valid only at the stoichiometric iso-surface and
the front speed is a function of the stoichiometric mixture
fraction.



Front Propagation Velocity

e Since governing equation at iso-surface is not valid
anywhere else, the following transformation applies

P s oE oY
=E(x,t) -y at+uax V=S5 (Zs't)\/“(axj

— Transformation does not apply to front-speed (relationship
derived from a full-field mixture fraction governing equation)

e Front-speed obtained from iso-surface solution (2 =

4=9(X,¢,0))

(5 {2 G [ o (5T

up (X,£) Sp (X.,$)




Properties of Position Dynamics PDE

O& o; 0% _(o¢
E+(u—uD(x,§))&—v—(n ~ sD(x,é){l (5)(

 Non-linear wrinkle convection

— Flow based convection as well as position-coupled diffusion based
convection

e Linear term from “Diffusion” of wrinkles

— Similar to stretch effects in premixed flames (i.e. stretch correction to
flame speed)

e Non-linear term from diffusion

 Boundary conditions

— physics required input from full-field mixture fraction solutions (diffusion
wave transport & non-linear diffusion term)

» Stems from the fact that boundary conditions (at inlet, walls etc.) need to be accounted
for in “reduced” governing equation for flame position

28



Future Directions for Task 4

Linearization of position dynamics governing equation
— Steady state governing equation
— Flame wrinkle governing equation

Application of position dynamics to reacting jet in
crossflow configuration

|dentification of key control parameters
Spatially integrated total heat release dynamics

Comparisons with real reacting jets in crossflow



Task 5: LES Studies of Supercritical Mixing and
Combustion

Autﬂ'ign-tiﬂw

Baseline model
NOT actual design

* Systematic variation of design parameters
— Momentum ratios for fuel and oxygen, number of sets
— Size and spacing of injectors
— Fuel upstream of oxidizer jet
— Flow rates

* Computational modeling may be more cost effective but include its
own challenges

— Autoignition kinetics (large uncertainty, maybe wrong)
— Turbulence-chemistry closure

— Real gas effects .



Task 5: LES Studies of Supercritical Mixing and

Pressure: 300 bar
~90 % CO, concentration

Inlet temperature: 1100K
All incoming fluids are Supercritical

— O, (50 bar, 155 K),
— CO,. (77 bar, 304 K),
— CH,. (46 bar, 190 K)

Reduced Kinetics needed

Combustion

Parameters Value
P et 300 bar
Teross 1100 K
Ucross 50 m/s
Tiets 300 K
Jox 20
Je 18.4
De/Doy 0.6
Channel length 75 D,
Re;jo Reje 4.4 x 103, 7.8 x 10°,
Recos 1.5 x 106

Mechanism Species Steps
USC Il 111 784
Reduced* 27 150
Jones-Lindstedt? 7 (6%) 4

1Coogan et al., ASME Turbo Expo (2016)

2Jones & Lindstedt, Comb FI. (1988)

* Does not include N,

31




Modified Jones-Lindstedt (J-L) Mechanism

 Quick assessment
« Only CH, O,, CO, H,, H,0O, CO,
« modified to predict T_4 and ignition

1
CHy +35 0, CO +2 H,

CH, + H,0 - CO + 3 H,
CO + H,0 & CO, + H,

1

Step Number | A (Original) A (Modified)
1 4.4 x 101 1.1 x 1010
2 3.0 x 108 7.21 x 106
3 (forward) 2.75 x 10° 6.6 x 107
3 (backward) 8.0 x 1010 1.91 x 10°
4 (forward) 6.8 x 10%° 1.63 x 1014
4 (backward) 7.1 x 107 1.70 x 1016

Jones & Lindstedt, Comb. Flame (1988)

Temperature [K]

1450
1400
1350
1300
1250

le-02
1e-03

le-04 |

1600
1500
1400
1300 i

le-02

1e-03

le-04 |

Tonion deiay 18

1500

le-02
1400 1e-03
1300 } 104
Te04 o2 o 0% 0%
Residence time [s] 1000/T, [1/K]
Detailed Detailed
Reduced @ Reduced
JL LN r
Optimized J-L I Optimized J L [

P =200 atm, T = 1250 K CO, molar concentration = 92.5%



Numerical Methodology

e LESLIE; a multi-species compressible flow solver!:
— 3D Adaptive Mesh Refinement finite-volume solver
 Mesh adapted and then frozen once solution settles down
— 2" order Predictor-Corrector with artificial dissipation

— Time integration: 2"d order explicit

— Characteristics based boundary conditions

— Chung’s transport with Peng Robinson Real Gas EOS
— Thermally perfect gas EOS used for comparison

 Subgrid-scale (SGS) closures:

— Momentum, energy & scalar subgrid fluxes: One-equation model
turbulent kinetic energy? model used for closure

— Kinetics computed using filtered variables

1Genin & Menon, AIAA J., 48, 2010; 2Kim & Menon, I. J. Numer. Meth. Fluids, 31, 1999



2D/3D Preliminary Investigations: Flame Structure

* Flame anchoring very different:
— 2D: flame anchoring occurs on jets . . .
— 3D: Lifted flame anchored on 4000 |~ ©Oneinjection sequence -
oxidizer jet A
— engulfment and jet wake effects
e Differences in combustion regime:
— 2D: reaction occurs in rich regime
— 3D: reaction occur close to
stoichiometry and on lean side 00 02 04 06 08 10
* 3D needed for accuracy: Mixture fraction [
— CPU cost severe for multi-block grid
* 32/65/90M for single/two/three
— Use AMR as alternative approach
* Cost effective and refined
* Structured grid for high accuracy

Temperature [K]
]
o
=
o

Combustion regime
and flame structure
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Flow must have enough time for fuel
and oxidizer to mix and then ignite (T is

high enough)

Scalar Dissipation Rate Il

Da’: ranges from <<1 to O(1) ST TR

Iso-lines represent the stoichiometric

mixture fraction value

The boxed regions:

Da' -

0.0000 1,0600 2.0000

— Near stoichiometric with low S.D.R.

— Possible auto-ignition region Da = Tmix
Tignition delay

— Kinetics controlled

35



Instantaneous Reacting Flow Features

Autoignition close to predicted location N
based on mixing o 2000

-1650
1300

Autoignition occurs slightly downstream of =§33
the oxidizer jet towards lean side

Autoignition with lifted flame structure

Temperature
2000
-

-1650

- 1300
950
600

Autoignition

Vorticity magnitude colored
Temperature iso-surface (2100 K, 1500 K) by temperature
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Instantaneous Reacting Flow Features

Schlieren ., . u— Temperature BT
300 850 1400 1950 2500

Schlieren Temperature

Large density gradient (Schlieren: log of density gradient)
Mixing of fuel and oxidizer followed by ignition in lifted regions
Autoignition in hot kernels where fuel mixes with oxidizer

— Finite-size kernel but no continuous flame structure

Autoignition sensitive to many parameters: mixing time, kinetics, local
scalar dissipation rate, etc. .,



Instantaneous Flame Structure

o s e——— : 3000 [rrrrrrr T e :
,-.. : Flarnell.loldex | 2700 Flan:ll'gdex ]
= 0.5 E . 2400} 0.5
E ] e L
=1 © 0.0 ] 5 21001 -0.0
< 05 ] 5 1s00f 0.5
? IS £ 1500 ‘1.0
< ‘ ] o
o E g 120
) E =
o
"""""""""""" b'.é"""":
Mixture Fraction
Heat release rate v/s Damkohler number Temperature v/s mixture fraction

e Da <<1 (flow property resolved, slow chemistry)

* Multi-mode combustion after ignition
— Flame Index is positive (premixed) & negative (non-premixed)
— Most of burning occurs under lean conditions

* Compressibility factor shows marginal variations (is PG OK?)
38



Effect of Compressibility

Real gas EOS

300 625 950 1275 1600
Temperature “ g™ "7 iy
I

¥ (x10™ -3 m)
O = b o N DD
L

X (x107™-3 m)

i . 0.00 0.25 0.50 0.75 1.00
Mixture Fraction mm’ |

—

¥ (x10™ -3 m)
O = b o N DD

5 10 15

X (x107™-3 m)

20 25

¥ (x10™ -3 m)

¥ (x10™ -3 m)

Perfect gas EOS

300 625 950 1275 1600

Temperature “ g™ "7 iy
10 T
9-
8-
TE
6-
5-

£

4k i

(l
3+ "

I
2F i 1
1+ ||
0 l Ll == I 1 1 1

5 10 15 20 25
X (x107™-3 m)
i . 0.00 0.25 0.50 0.75 1.00
Mixture Fraction mm’ |

10
9
8
7
6
5
4
3
2
1
0

5 10 15 20 25

X (x107™-3 m)

* Both cases simulated at same operating conditions

 Reduced jet penetration with perfect gas EOS in comparison to Peng
Robinson EoS - clearly shows RG effects

 Heat release also decreased with perfect gas EOS
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Flame Length and Combustion Efficiency

300 625 950 1275 1600

Combustion is not efficient Temperature ~
Combustion efficiency estimated as:

n =100 x 2L =Tout _ 4go)

mygin
Flame length, L; ~ 14.5 D,

— estimated as intersection of Z =
Z,and T =1500 K

n needs to be improved
— Inflow realistic turbulence

—
o

y (x10™ -3 m)
S = N w bk D
O L L I L L L [ L

X (x10™-3 m)

Temperature overlaid with stoichiometry line

— Modify J and jet spacing
— Mass flow rate changes

— Jet-staging and distributed mixing
— Inflow swirl
More studies needed and underway
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2D Preliminary Investigation: Density

o LcHa || o2 |

Injection
sequences T=1200K
One
I I I I Density (kg/mA3)
Two
sensity (ka/mA3)
Three

Density (kg/mA3)

1sfSequence  2nd sequence  5000e+01 300 <450 600 & 8600e+02



Scalar Dissipation Rate I N
P 0.0 150.0  300.0 Scalar Dissipation Rate [ll§ ,
0.0 150.0 300.0

Scalar Dissipation Rate [l ,
0.0 150.0 300.0

o 1-set, 2-set and 3-set show differences in mixing and locations of low SDR
 Possible interactions due to acoustic waves in subsonic
« Multiple JICF configurations may all be unigue
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Autolgnition and Blow out

Temperature

-—2000

-1650

1300
950

00

Temperature T
300 850 1400 1950 2500

Temperature ,
300 850 1400 1950 2500

« Limitations of kinetics
* Influence of upstream acoustic waves
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Future Directions for Task 5

e Future studies to focus on

— Effect of chemical kinetics — employ more detailed kinetics

— Locations and injection strategies for fuel and oxygen non-
reacting mixing studies with different injector locations to
determine how to increase the low SDR regions (autoignition)

— 1D LEM to handle all flame regimes

 Challenges

— reliable mixing rules and kinetics

— SGS closure for high Re multi-mode combustion (how to
dynamically switch between different combustion regimes)



Summary of Year 1 Achievement

High pressure shock tube developed

Reduced kinetic model with 27 species for
natural gas and syngas

Governing equation developed for theoretical
frame work

LES investigation of JICF
— Real gas effect

— 3D effect
— Deficiency of kinetics, insight to combustor design



Thank you!

&
Questions?

Acknowledgement:
UTSR Project: DE-FEO025174; PM: Seth Lawson



Pressure Fluctuations [atm]

Pressure Fluctuations [atm]
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Analysis of Pressure Fluctuation
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 Pressure at various locations (Autoignition location C)
« AtAand B ~ 3-5% fluctuations due jet interacting with cross flow
— St of peak frequencies range from 0.1 — 1.1 (~ jet preferred modes)

At C and D, the fluctuations are purely indicative of turbulent fluctuations



Task 5: LES Studies of Supercritical Mixing and
Combustion

Real gas framework

(E= p!Yk) (T, p) (TipsYk)

Non-linear
solver

(T= p ) Yk)

Peng-Robinson | Thermodynamic Chung/Fueller
EoS database transport properties

Cubic
solver

(P) (L,A,pD)

48



Modeling Under Supercritical Conditions

Fluid properties assessed for methane, oxygen and carbon dioxide
against reference NIST database

Reasonable agreement for a wide range of operating conditions
Peng Robinson cubic EoS is adequate for present study

Density for CH4 Density for 02 Density for CO2
T —— ; ; T T 1600 T — : : : T 1600
'''' e — NIsT ; — NIST
i T <+ PR ] 14001 5, e PR 1400 %5,
e, "',._‘.v :
e 1200} i ] 1200}
— 1000+ — 1000}
m m
£ E
S 800| S 800
5] ]
3000 wro £ 600} £ 600}
30.00 MPa 4
\\\ 4001 = 00 MPa 1 400
10.00 MP= . ) 200! “hﬁ‘-—‘, 200+
B A=y MPaee |
: Am—— : E 3 5.00 MP2 e
L L S 1.00 M1.00 MPa , 1.00 MPa s 1 0U MP3 s | . - 1.011.00 MPa
50 100 150 200 250 300 350 400 %0 100 150 200 250 300 350 400 ?50 200 250 300 350 400
Temperature (K) Temperature (K) Temperature (K)

Methane Oxygen Carbon dioxide
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