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Outline

• Value of face seals – utility-scale sCO2 turbines

• Face Seal Concept

• Analyses of Face Seal

• Fluid Analyses
• Reynolds equation model
• 3D CFD model

• Mechanical Analysis

• Thermal Analysis

• Progress overview & Next steps
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sCO2 Application Space
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450 MWe turbine layoutLayout of End Seals in sCO2 turbines

sCO2 cycles are closed loop & seal leakage flow needs to be recompressed

450 MWe cycle – 51.9% efficient cycle

(From Bidkar et. al, 2016)

End Seal layout for a sCO2 turbine

• End seals needed for shielding bearings from 

high-temp exhaust

• Turbine exhaust typically ~1000 psi pressure

• Seal leakage to atmospheric pressure needs to 

be recompressed using a scavenge 

compressor

~1000 psi

~75oF
3650 psi

~1350oF
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Need for low-leakage face seals

End Seal layout for a sCO2

turbine

Rotor

EXISTING TECHNOLOGY
Radial Labyrinth seal

Phigh
Plow

NEW TECHNOLOGY
Face seal

Face seals are worth ~0.55% points cycle efficiency compared to labyrinth seals

• Leakage flow calculated for existing 

technology (labyrinth seals) and new 

technology (face seals)

• Multi-stage centrifugal compressor 

designed as a scavenge compressor

• Comparison of labyrinth seals and face 

seals shows a 0.55% points cycle benefit 

for face seals
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Face Seals for utility-scale sCO2 turbines

• Face seals needed for utility-scale sCO2 turbines (24-inch diameter, 1000 psia pressure 
differential) not readily available

• Concept design explored using fluid, mechanical and thermal analyses

Fluid 

Analyses

Mechanical 

Analyses

Thermal 

Analysis

Face seal concept geometry
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sCO2 Face Seals – Fluid Analyses

• Fluid analyses goal: Predict pressure on the 
bearing face, predict leakage & windage 
heat generation

• Two approaches used for analyzing the fluid 
flow

– Approach # 1: Reynolds equation
– Approach # 2: ANSYS 3D CFD with 

CO2 real gas properties

• Compare the results and validity of the two 
approaches

Face seal concept geometry

Typical domain for flow analysis

Region 2

Region 1

Approach # 1: Reynolds equation
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sCO2 Face Seals – Fluid Analyses

• Bearing pressure predictions match well for Approach # 1 (Reynolds equation) and Approach # 2 
(ANSYS 3D CFX) for small film thickness

• Increasing film thickness leads to turbulent flow and breakdown of Approach # 1 assumptions

• sCO2 films show larger heat generation (compared to air) due to higher density

Higher density of sCO2 needs turbulent flow modeling & full 3D modeling not possible with 
conventional 2D-1D models
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sCO2 Face Seals – Structural Analysis 

• Coning is the angular mismatch between the bearing face & the 
rotor

• Parametric Finite-element Model to analyze effect of geometry on 
coning sensitivity

• Isothermal FEM with pressure loads from the CFD model 

• Increasing dimension ‘d’ leads to positive coning

Parametric Finite Element Model used to explore the design space and optimize the seal 
cross-section for small positive coning

Face seal concept geometry

Converging
Positive Coning

Parallel
Zero Coning

Diverging
Negative Coning







Coning for d= 0, a = 4, e 1.2 Coning for d= 2.5, a = 4, e 1.2
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sCO2 Face Seals – Thermal Analysis 

• Leakage flow, windage heat generation from CFD, and sCO2 properties used as an input to the 
thermal model

• Heat transfer coefficients and thermal boundary conditions using local flow properties

• Advection model (energy conservation) used with ANSYS to predict metal temperatures

• Combined pressure-temperature loads used for predicting coning

Based on the fluid, structural & thermal analyses,  a net pressure-thermal coning of about 
0.0005 inches is possible

Face seal concept geometry Energy balance for film
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sCO2 Seals Test Rig Concept

Full-scale test rig concept developed for face seal testing
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sCO2 Seals Rig Loop

Full-scale test rig to be coupled to existing CO2 loop at Southwest Research
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Progress Overview & Next Steps

Phase 2 Detail design & testing to attain TRL6

50 MWe and 450 MWe  

Turbine layouts

Face seal concept
24-inch, 1100 psi

sCO2 test rig Concept

Subscale demo
5-inch face seal

24-inch sCO2 rig 
design

Design & fabrication 
of 24-inch face seals

Ready for 
Field Testing

Phase 1 Concept Design effort complete

24-inch sCO2 rig 
commissioning
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Summary and Conclusions

• Value of Face Seals

• Face seals can enable a 0.55% points benefit over present 
labyrinth seals technology

• Unavailability of face seals for utility-scale sCO2 turbines

• Face seal concept

• Importance of 3D CFD with real gas properties

• Coning analyses with pressure/thermal loads to show basic 
feasibility of the concept

• sCO2 Seals rig concept completed

• Plans for subscale & full-scale testing of seals
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BACK-UP
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Seal Concept

• Springs & pressure bias the stationary ring 
towards the rotor

• Spiral grooves generate separating force

• Seal tracks rotor axial transients

Seal stator

Seal 
stationary 

ring

Springs

Casing

Stationary
Ring

Rotor

Stator

Spring

Secondary 
seal

Casing

Stator
Stationary

Ring

Rotor

Spiral 
grooves on 
the rotor
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sCO2 Seals test rig concept

Skid/frame

Pressure vessel 
(48” OD)

Electric 
motor

CO2 inlet CO2 exit

sCO2 Test Loop Concept

Seal test rig concept developed for high pressure, high temperatures  and large diameter seals


