Low-leakage seals for utility-scale sCO\textsubscript{2} turbines

GE Global Research
Rahul Bidkar
Bodhayan Dev
Jaydeep Karandikar
Andrew Mann
Jason Mortzheim
Deepak Trivedi
Jifeng Wang
Chris Wolfe

Southwest Research Institute
Tim Allison
Klaus Brun
Stefan Cich
Hector Delgado
Meera Day
Jeff Moore
Aaron Rimpel

Acknowledgement: "This material is based upon work supported by the Department of Energy under Award Number DE-FE0024007"

Disclaimer: "This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof."
Outline

• Value of face seals – utility-scale sCO₂ turbines

• Face Seal Concept

• Analyses of Face Seal
 • Fluid Analyses
 • Reynolds equation model
 • 3D CFD model
 • Mechanical Analysis
 • Thermal Analysis

• Progress overview & Next steps
sCO₂ Application Space

- Direct Fired sCO₂ 2030+
- sCO₂ Fossil 2025+
- Gen 4 Nuclear 2030+
- Steam
- HDGT CC
- LWR

- sCO₂ CSP 50+ % η_{th} 2020-2025
- sCO₂ WHR Compact $\eta_{th} >$ ORC 2015-2020
- ORC

Power Output [MWe]

Source Temperature [°C]

(From Hofer, 2014)
Layout of End Seals in sCO\textsubscript{2} turbines

450 MW\textsubscript{e} cycle – 51.9% efficient cycle

End Seal layout for a sCO\textsubscript{2} turbine

- End seals needed for shielding bearings from high-temp exhaust
- Turbine exhaust typically \(\sim1000\) psi pressure
- Seal leakage to atmospheric pressure needs to be recompressed using a scavenge compressor

sCO\textsubscript{2} cycles are closed loop & seal leakage flow needs to be recompressed

(From Bidkar et. al, 2016)
Need for low-leakage face seals

End Seal layout for a sCO₂

• Leakage flow calculated for existing technology (labyrinth seals) and new technology (face seals)
• Multi-stage centrifugal compressor designed as a scavenge compressor
• Comparison of labyrinth seals and face seals shows a 0.55% points cycle benefit for face seals

Face seals are worth ~0.55% points cycle efficiency compared to labyrinth seals
Face Seals for utility-scale sCO₂ turbines

- Face seals needed for utility-scale sCO₂ turbines (24-inch diameter, 1000 psia pressure differential) not readily available
- Concept design explored using fluid, mechanical and thermal analyses
sCO₂ Face Seals – Fluid Analyses

Face seal concept geometry

Typical domain for flow analysis

Approach # 1: Reynolds equation

\[
\frac{\partial}{\partial r} \left(r \frac{\partial (ph^3)}{\partial r} \right) + \frac{1}{r} \frac{\partial}{\partial \theta} \left(ph^3 \frac{\partial P}{\partial \theta} \right) = 6 \omega r \frac{\partial (ph)}{\partial \theta}
\]

\[
\frac{dp}{p} = \frac{\gamma M^2}{1 - M^2} \left(\frac{dA}{A} \right) - \frac{\gamma M^2 [1 + (\gamma - 1) M^2]}{2(1 - M^2)} \left(\frac{4C_f dr}{D_h} \right)
\]

\[
\frac{dM}{M} = -\left[1 + 0.5 (\gamma - 1) M^2 \right] \left(\frac{dA}{A} \right) - \frac{\gamma M^2 [1 + 0.5 (\gamma - 1) M^2]}{2(1 - M^2)} \left(\frac{4C_f dr}{D_h} \right)
\]

Fluid analyses goal: Predict pressure on the bearing face, predict leakage & windage heat generation

Two approaches used for analyzing the fluid flow

- Approach # 1: Reynolds equation
- Approach # 2: ANSYS 3D CFD with CO₂ real gas properties

Compare the results and validity of the two approaches
sCO$_2$ Face Seals – Fluid Analyses

- Bearing pressure predictions match well for Approach # 1 (Reynolds equation) and Approach # 2 (ANSYS 3D CFX) for small film thickness.
- Increasing film thickness leads to turbulent flow and breakdown of Approach # 1 assumptions.
- sCO$_2$ films show larger heat generation (compared to air) due to higher density.

Higher density of sCO$_2$ needs turbulent flow modeling & full 3D modeling not possible with conventional 2D-1D models.
sCO₂ Face Seals – Structural Analysis

Face seal concept geometry

- Coning is the angular mismatch between the bearing face & the rotor
- Parametric Finite-element Model to analyze effect of geometry on coning sensitivity
- Isothermal FEM with pressure loads from the CFD model
- Increasing dimension ‘d’ leads to positive coning

Parametric Finite Element Model used to explore the design space and optimize the seal cross-section for small positive coning

Coning for d = 0, a = 4, e 1.2

Coning for d = 2.5, a = 4, e 1.2
sCO₂ Face Seals – Thermal Analysis

- Leakage flow, windage heat generation from CFD, and sCO₂ properties used as an input to the thermal model
- Heat transfer coefficients and thermal boundary conditions using local flow properties
- Advection model (energy conservation) used with ANSYS to predict metal temperatures
- Combined pressure-temperature loads used for predicting coning

Based on the fluid, structural & thermal analyses, a net pressure-thermal coning of about 0.0005 inches is possible
sCO$_2$ Seals Test Rig Concept

Full-scale test rig concept developed for face seal testing
sCO$_2$ Seals Rig Loop

Full-scale test rig to be coupled to existing CO$_2$ loop at Southwest Research
Progress Overview & Next Steps

Phase 1 Concept Design effort complete

- 50 MW_e and 450 MW_e Turbine layouts
- sCO_2 test rig Concept

Face seal concept
- 24-inch, 1100 psi

Phase 2 Detail design & testing to attain TRL6

- Concept Design TRL 2-3
- Subscale demo 5-inch face seal
- Design & fabrication of 24-inch face seals
- 24-inch sCO_2 rig design
- 24-inch sCO_2 rig commissioning
- Full-scale Testing
- Ready for Field Testing

Table: 2014-2019

<table>
<thead>
<tr>
<th>Year</th>
<th>Q1</th>
<th>Q2</th>
<th>Q3</th>
<th>Q4</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2015</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2016</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2017</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2018</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2019</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Summary and Conclusions

- Value of Face Seals
 - Face seals can enable a 0.55% points benefit over present labyrinth seals technology
- Unavailability of face seals for utility-scale sCO$_2$ turbines
- Face seal concept
 - Importance of 3D CFD with real gas properties
 - Coning analyses with pressure/thermal loads to show basic feasibility of the concept
- sCO2 Seals rig concept completed
- Plans for subscale & full-scale testing of seals
BACK-UP
Seal Concept

- Springs & pressure bias the stationary ring towards the rotor
- Spiral grooves generate separating force
- Seal tracks rotor axial transients
sCO\textsubscript{2} Seals test rig concept

Seal test rig concept developed for high pressure, high temperatures and large diameter seals