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Integrated Energy Systems 

•  Modernization of the energy systems is underway 
and poses technical and social challenges 

•  Integrated energy systems involves more than just 
power grid representation 
– Coupled with social networks 

•  Individual activities and behavior has significant impact on power 
system demand and performance 

•  Changes in demand based on real time pricing 
•  Adoption of green technologies and impact 

– Coupling with different infrastructures and markets 
•  Transport: Impact of electrical vehicles and V2G 
•  Communication: Increasing use of communication infrastructure 
•  Markets; Power markets at different spatio-temporal scales 
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Hypothesis:	  Next-‐genera4on	  energy	  systems	  networks	  
cannot	  be	  effec$vely	  designed,	  analyzed	  and	  controlled	  
in	  isola4on	  from	  the	  social,	  economic,	  sensing	  and	  control	  
contexts	  in	  which	  they	  operate.	  	  



Advances in ICT and AI can help 

•  Proliferating digital devices that, by ubiquitous 
and varied measurements and interaction with 
the end users and the underlying energy 
system, can provide context-rich information 
and services.  

•  New data analytics and machine learning 
techniques can lead to driven first principles 
modeling and analytics capabilities to support 
the energy systems modernization program. 



Computational Modeling of Integrated 
National Energy Systems (MINES) 

•  Integrated HPC-enabled high-resolution models of synthetic 
power networks  
–  Detailed representations of all the constituent elements of 

the electrical grid: generation, transmission, end users  
•  A modeling framework to represent urban environments and 

the embedded social network comprising end users, their 
interactions and movements,  
–  Realistic demand and response behaviors for consumers, 

system operators and individual companies.  
•  Applications areas include 

•  study of interdependencies among infrastructures 
•  vulnerabilities and resilience; electricity market analysis 
•  renewable and distributed energy generation 



INTEGRATED HPC-ENABLED HIGH-
RESOLUTION MODELS OF SYNTHETIC 
POWER NETWORKS  
 

Section   



Data Sources/Methods Used 
•  Public reports from different public utility companies and local 

governmental agencies 
•  High level factsheets from Pepco on generation capacity, main 

generators, number of substations, total transmission and distribution 
line statistics 

•  Overall energy consumption 
•  Streetlamp locations 

•  Tracing power lines on Google earth 
•  Identify lines based on overhead clearing, which can be visually identified 

by experts 
•  Domain expertise in connecting different networks 

•  Use of the power system simulation software, PSSE, to 
determine how the grid interconnects within the greater DC 
area 



Data Sources 
Name	   Descrip1on	   Type	  

Electricity	  generaEon	   hFp://205.254.135.24/state/state-‐energy-‐
rankings.cfm?keyid=33&orderid=1	  

Open	  Source	  

Electricity	  ConsumpEon	   hFp://www.eia.gov/state/seds/hf.jsp?
incfile=sep_sum/plain_html/
rank_use_per_cap.html	  

Open	  Source	  

DistribuEon	  network	   Tracing	  power	  lines	  on	  Google	  earth,	  idenEfy	  
lines	  based	  on	  overhead	  clearing	  

Discussion	  with	  
subject	  maFer	  
expert,	  ECE-‐VT	  

Transmission	  network	   Transmission	  2000	  data,	  power	  system	  
simulaEon	  soZware	  to	  find	  grid	  interconnects	  

Commercial,	  ECE-‐
VT	  
	  



Power Network Synthesis 

•  The transmission and distribution grid geospatially 
determined using Google Earth & power system 
simulation software, PSSE, to determine how the 
grid interconnects within the greater DC area.   

•  The major transmission lines (500kV, 230kV, 
138kV, and 115kV) bring large amounts of power 
into the city from the Baltimore Gas & Electric 
(BG&E), Potomac Electric Power Company (PEPCO), 
and Dominion Virginia Power (DVP) systems.   

•  This power is brought into urban parts of the city 
through underground subtransmission & 
distribution level circuits (69kV, 34.5kV).   

•  Almost all the distribution network within the region 
are underground, with overhead distribution lines 
feeding power to customers further outside the 
urban areas.  



Incorporating Substation Locations 

•  Identifying specific 
substations using openly 
available information 

•  Provides estimate as to 
how the power is 
brought into the city for 
consumption & 

•   Where the major load 
centers and tie lines are 
located. 
 

 



SYNTHETIC SOCIAL SYSTEMS 
Section   



Synthetic populations, infrastructure,  
networks and multi-networks 

§  A statistically accurate, augmentable 
representation of agents (people, 
infrastructure elements, things)   
§  in a given area with associated demographic, 

physical, social and behavioral attributes 

§  Anonymity and Privacy preserved 

§  Synthetic infrastructure and social 
networks  
§  Capture the interaction between individuals 

and infrastructure elements 

§  Multi-networks capture the interaction 
between individuals and infrastructures across 
networks 



Constructing synthetic multi-scale social 
contact  networks at scale 
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§  Activity locations: 

§  LandScan 

§  D&B 

§  InfoGrid 

§  NAVTEQ/HERE POIs 

§  OSM POIs 

§  Wikipedia 

§  Residence locations: 

§  LandScan 

§  NAVTEQ/HERE 

§  OSM 

Data sources – general and specific 

§ Ac1vity	  template	  data	  
§ NHTS	  
§ MTUS	  
§ ATUS	  
§ Custom	  surveys	  
§ Country	  similarity	  
measure	  (matching	  
algorithm)	  

§ Administra1ve	  boundaries	  
§ GADM	  
§ NAVTEQ/HERE	  
§ OSM	  
§ US	  Census	  
§ ADC	  Worldmap	  



Global Synthetic information: A big data 
challenge 
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Synthetic Information Viewer (SIV) 

Synthetic Information Viewer (SIV) is a web-based tool used to 
visualize synthetic information at a desired level of 

disaggregation. It supports synthetic U.S. and 13 other 
countries, amounting to 800+ million individuals.



DISAGGREGATED MODELS OF 
RESIDENTIAL AND COMMERCIAL 
ENERGY DEMAND 

Section   



Motivation: Demand Side response 

•  Commercial and residential buildings 
together account for ~40% of energy 
consumption. 

•  Energy consumption in these sectors 
is, in large part, a function of the 
activities of  the residents, 
customers, and employees of these 
buildings. 

•  Consumption may change as 
appliances become more efficient or 
people begin to take more energy-
saving measures. 

•  This calls for the need for a highly 
detailed model of energy 
consumption. 

20 Figure Source: US Annual Energy Consumption Outlook - 2012 
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Synthesizing household level daily 
energy demands 

Data from multiple sources is combined in one 
common architecture to generate time varying, 
individualistic demand profiles. 
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Residential Energy Consumption: Data 
Data	   Type	   Descrip1on	  

ATUS	   Survey	   Contains	  acEvity	  diaries	  over	  a	  24	  hour	  period	  for	  13,260	  
respondents.	  	  

EIA-‐RECS	   Survey	  	   Contains	  detailed	  household-‐level	  characterisEcs	  and	  
associated	  energy	  consumpEon	  

SyntheEc	  
PopulaEon	  

Generated	  as	  
described	  

Contains	  household	  level	  and	  individual	  level	  demographics	  
represenEng	  Washington-‐DC	  area.	  	  

Ac1vity	  Name	   Appliances	  Used	   Energy	  ra1ng	  
(wa?s)	  

Usage	  (%)	  

Laundry	   Washer,	  Dryer	   {234,	  670}	   {.45,	  .55}	  

Dish	  washing	   Dishwasher	   1200	   1	  

Cooking	  (mid-‐day)	   Microwave	   500	   .5	  

Watching	  TV	   Television	   220	   1	  

Computer	  usage	   Compute	   160	   1	  

Cooking	  (morning)	   Stove,	  Coffee	  maker,	  
Microwave,	  Toaster	  Oven,	  
Blender	  

856	   {.35,	  .05,	  .5,	  .05,	  0,	  .
05}	  

Cooking	  (night)	   Stove,	  Coffee	  maker,	  
Microwave,	  Toaster	  Oven,	  
Blender	  

940	   {.35,	  .05,	  .45,	  .05,	  05,	  .
05}	  
	  



Modeling Workflow 



Residential Energy Consumption 

We further break down the 
activities that take place at 
home. 
 
We categorize the energy 
consumption of a residential 
building into two major 
groups: active energy 
consumption varies as a 
function of the activities of the 
household members. Passive 
energy consumption is mainly 
due to temperature 
regulation, refrigeration, etc. 
and does not vary with 
individual activities. 
  

Total	  Energy	  
Demand	  

EAcEve	  
(Laundry,	  Watching	  

TV,	  Cleaning)	  

Shared	   Individual	  

EPassive	  
(Hot	  water	  usage,	  	  
Space	  heaEng)	  

•  Laundry 
•  Washing dishes 
•  Watching TV* 
•  Cooking 
•  Cleaning 

•  Computer use 
•  Checking email 



Usage pattern in a typical house 



Validating the model 



Residential Energy Consumption: Results 



APPLICATIONS 
Section   



Applications of synthetic demand modeling 

•  Placing energy storage devices to support 
bidirectional flow and net metering 

•  What levels of renewable penetration will make 
it necessary to update the electrical 
infrastructure? 

•  How to nudge consumers to move load from 
peak hours to off-peak hours? 

•  How can we improve grid resiliency? 
•  How can we protect the grid from cascading 

failures within and across infrastructures? 



Case Study: Energy Demand Scaling 

•  We selected about 20% of households and shifted their 
cleaning and washing activities from peak to off peak time 
periods 

•  We saved about 4.5 MWh of energy at peak time 

30 



2. CASCADING FAILURES IN 
POWER NETWORKS 

Section   



Power networks, cascades and resiliency 

§  Development of dedicated 
theory and analysis for power 
networks. 

§  Scenarios: 
§  S1: NPS-1 
§  S2: A coordinated, targeted 

attack on the major 
generating substations Sub-
scenarios: 

§  C1: protection system works 
perfectly 

§  C2: protection system within 
a certain distance of the 
attack is compromised.  

32



Broad Results 

 
1.  Scenario 1 is unlikely to cause large cascading failure of 

the grid, highlighting the role of protection devices and 
the local structure of the power grid;  

2.  Scenario 2 can lead to widespread cascading failures 
even though the physical damage to the infrastructure is 
minimal;  

3.  For both scenarios, using smart devices like phasor 
measurement units (PMUs) already present in the field 
and placing relays at strategic locations inside EMP-
proof boxes, can considerably reduce the damage.  

33



Broad insights 

•  The physical damage to electrical infrastructure and 
corresponding outage probabilities depend on  
•  urban geography, structure and geography of the power 

infrastructure, location of impact and the prevailing weather 
patterns. 

•  Substantial immediate effects of IND  
•  Might not be possible to restore power for months because 

of resulting environmental contamination, and lack of spare 
capacity and components 

•  Islanding becomes important 
•  Demonstrates need for developing realistic and integrated 

representations of the underlying interdependent system 



Key Factors Considered 

 

•   Outage region  and to what extent? 
•  How many control centers, substations, transformers have been 

destroyed, and impact of cascading failures? 
•  Resources available for restoration, e.g., spare transformers 
•  Secondary effects: impact on communication, health, 

transportation 
•  Number and location of control centers, transformers, 

generating units in the DC region. 
•  Distribution network 
•  Total peak time load, generation capacity of the DC region 
 



Dynamic Analysis on synthetic power 
system 

•  Dynamic analysis by simulation of tripping 
•  Steady state model reduction  using PSSE 

•  Transient analysis of the eastern grid (PEPCO 
service area) 

•  System response emulation for 100 sec 
•  Final frequency at which local grid settled was found 

to be lower than the base frequency 



Estimated Long Term Power Outage Area 

•  Probability	  of	  damage	  to	  individual	  substations	  
	  	  
•  	  	  	  /	  	  	  	  /	  	  	  	  	  :	  High/medium/low:	  probability	  of	  damage	  

Aggregated	  	  outage	  area	  

•  Long-‐term	  outage	  area	  devised	  by	  geographically	  relating	  the	  location	  of	  substations	  in	  
the	  city	  with	  the	  blast	  damage	  zones.	  	  	  

•  Loss	  of	  a	  substation	  has	  a	  much	  more	  widespread	  impact	  on	  power	  delivery	  to	  the	  
customers.	  	  



Estimated Cost of Damage to Electrical 
Infrastructure 

•  Factors considered in cost assessment 

•  Estimate of substation damage costs 

•  Estimate of distribution line costs 

•  Cost of damaged substations is $96.4m, and 
distribution system including underground network is 
$705m.  

•  Total loss in load is 889.1 MW. At avg. price of $93 
per MWh, value of energy lost is $27.78m 



3. SMART CITIES APPLICATION 
Section   



Electric vehicle (EV) charging station 
placement 

•  Transportation infrastructure contributes 
26% of carbon emissions in the US 

•  Well accepted approach for reducing 
emissions: adoption of EVs and hybrid 
vehicles  

•  Challenge: limited cruising distance 
– Need to provide charging stations 

•  Where do we deploy charging infrastructure? 



EV charging infrastructure 
•  Different kinds of charging stations: 

–  Level 0: charging at home 
•  4.5 miles of range per hour of charge (Nisan Leaf) 
•  22 hours for full charge 

–  Level 1: 240V supply 
•  26 mile of range per hour 
•  ≈ $2000 

–  Level 2: DC fast charging 
•  40 miles of range per 10 min 
•  ≈ $100,000 

•  Where should different kinds of charging 
stations be installed? 



EV Charging Station Problem 
•  User demand 

– Relatively small fraction currently has EVs (<2%) 
– Might grow to 10% in a few years 
– Need to be able to serve current users and growing 

demands 
•  Typical scenario 

– Users park EV and leave it for charging 
–  Should have enough charge to allow for next trip 

•  Objectives of interest: 
– Distance to charging station from activity location 
– Alternative transportation from charging station 
– Activity duration needs to be taken into account 



Formalizing the problem 

For each potential location 
•  Fraction of battery level 

that gets charged for 
EV  

•  Depends on activity 
duration 

Solve as a facility location problem 



A case study 

Popula1on Over	  1.6	  million 
#acEviEes	  per	  person ~5 
PopulaEon	  with	  EVs ~0.2%	  of	  the	  populaEon 
#potenEal	  locaEons	  for	  
charging	  staEons 

~3700 

•  Currently low adoption rate 
•  Specific demographics from literature 

–  Urban trendsetters (18-35), high income levels 
–  Middle-aged families with high income 
–  Seniors (60-75) with high income 

•  In general, can vary adoption rates and other 
demographics 



Results 

Charging	  staEons	  of	  each	  type	  vs	  D	  	  

DistribuEon	  of	  charging	  staEons	  for	  D=1km	  

Frequencies	  of	  combinaEons	  of	  
charging	  staEons	  used	  by	  each	  EV	  	  
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DistribuEon	  of	  average	  income	  of	  
EV	  users	  at	  each	  charging	  staEon	  	  



Summary 
•  Synthetic and detailed representation of 

integrated system can be useful in addressing 
important problems arising in designing smart 
grids 

•  ICT Technologies including Big-data and machine 
learning techniques can be developed to provide 
new insights and solutions to emerging problems 
arising in the design and deployment of next 
generation energy systems  
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ADDITIONAL SLIDES 
Section   



National planning scenario 1  

  
•  Unannounced	  10	  kt	  

detonation	  of	  an	  
Improvised	  Nuclear	  
Device	  (IND)	  

•  16th	  and	  K	  Street,	  
Washington	  DC	  

	  
•  11:15am	  May	  15th,	  

2006	  



Modernizing today’s energy systems 

•  Energy system modernization poses very large 
scale, evolving and interdependent scientific, 
policy and design challenges that test the limits 
of current understanding. 

•  A national effort is underway to architect and 
build the next generation power grid (“smart 
grid”), harness renewable energy sources and 
reduce its carbon footprint while expanding 
generation and distribution capacities 



Commercial Energy Consumption: Results 


