Effects of Exhaust Gas Recirculation (EGR) on Turbulent Combustion Emissions in Advanced Gas Turbine Combustors with High Hydrogen Content (HHC) Fuels

Robert P. Lucht, Jay. P Gore, Yiguang Ju and Michael Mueller

Maurice J. Zucrow Laboratories School of Mechanical Engineering Purdue University West Lafayette, IN Dept. of Mechanical and Aerospace Engineering Princeton University Princeton, NJ

DOE Award No. DE-FE0011822

National Energy Technology Laboratory University Turbine Systems Research Program

Thanks: Chris Reuter, Prof. Sang Hee Won

Contents

- Kinetic mechanism development and validation including non-equilibrium reaction of HCO prompt dissociation in high pressure CH₂O flames with CO₂ dilution.
- H₂O/CO₂ kinetic effects on turbulent flame speeds/structures of CH₄/air mixtures with H₂O/CO₂ dilution using RATS Burner
- New design of Axisymmetric Reactor-Assisted Turbulent (ARAT) Burner for High Turbulence with EGR.

1. Kinetic study of non-equilibrium prompt dissociation of HCO at elevated pressures with CO₂

Major oxidation pathway of HHC fuels

 $C_2H_6, CH_4 \rightarrow CH_2O \rightarrow HCO \rightarrow H+CO \rightarrow CO_2, H_2O$

Why CO₂? HCO+M=H+CO R2a HCO+O₂=HO₂+CO R2b

CO₂ affects the competition between the two key reactions

- Formaldehyde (CH₂O)/CO₂ flames are excellent targets to study HCO prompt reactions and CO₂ effect, but have not been reported in the literature
 - Formaldehyde flame sampling has been done at very low pressure (~30 torr)¹⁻⁴
 - Formaldehyde has been studied in shock tubes⁵⁻⁹ and flow reactors^{10,11}
- We reports the *first flame speed measurements* at high pressure and with CO₂.
- 1. J. Vandooren et al. (1986) 7. G. Friedrichs et al. (2004)
- 2. M.C. Branch et al. (1991) 8. G. Friedrichs et al. (2002)

9. S. Wang et al. (2013)

10. P. Glarborg et al. (2003)

11. S. Hochgreb et al. (1992)

- 3. A.R. Hall et al. (1957)
- 4. V. Dias et al. (2012)
- 5. Y. Hidaka et al. (1993)
- 6. V. Vasudevan et al. (2005) 12. J. Santner et al. (2015)

How do we create CH₂O and HCO?

- Formaldehyde is toxic and difficult to generate in its pure form due to polymerization
- Use trioxane to generate formaldehyde *in situ*
- Formaldehyde (CH₂O) forms before radical pool
 - > 99% of trioxane is consumed through thermal decomposition
- These flames are governed by the same chemistry as formaldehyde flames

J. Santner, F.L. Dryer, Y. Ju, Proc. Combust. Inst. 34 (2013) 719–726.

High Pressure Flame Experiments

Experimental conditions of pressurized trioxane flame speed measurements with/without CO₂

Case	Equivalence ratio	Trioxane	02	CO2	N ₂	Не	Т _f (К)
Lean	0.7	0.0454	0.1946	0.0000	0.5846	0.1754	1900
Ultra-lean	0.34	0.0454	0.4000	0.0000	0.3792	0.1754	1882
Rich	1.4	0.0889	0.1904	0.0000	0.5544	0.1663	2000
Lean with CO2	0.7	0.0491	0.2103	0.2000	0.2201	0.3206	1900
Rich without CO2	1.4	0.0943	0.2021	0.2000	0.1266	0.3770	2000

$$\begin{array}{c} X+CH_2O=HCO+XH \quad (equilibrium) \qquad (R_{1a}) \\ X+CH_2O=H+CO+XH \quad (non-equilibrium, Prompt) \qquad (R_{1b}) \end{array}$$

Why Lean?
$$\begin{array}{c} HCO+M=H+CO \qquad R_{2a} \\ HCO+O_2=HO_2+CO \qquad R_{2b} \end{array}$$

Flame speeds and radical pool

Ultra-lean: $\Phi=0.34$

H+O2=O+OH H+O2+M=HO2+M

HCO+M=H+CO+M (R2a) HCO+O2=CO+HO2 (R2b)

- Mole fractions of O, OH, and total radical pool in the ultra-lean cases is larger than that in the lean case, because of increase of H+O2=O+OH,
- While H radical's mole fraction is lower than that in the lean case, causing a decrease of system reactivity directly, because of the increase of R2a/R2b branching ratio.

HCO prompt dissociation on H production at 4 atm (HP Mech-Prompt)

HCO Prompt dissociation effect increases with increasing O2 mole fractions. 9

Flame speeds and reaction sensitivity

•HCO+M=H+CO+M (R2a) •HCO+O2=HO2+CO (R2b)

HP-Mech with prompt HCO reactions has better predicted flame speeds.

Effect of CO₂ dilution on HCO prompt reactions

HCO+M=CO+H+M

 HP Mech with HCO prompt reactions has a good prediction of flame speed on fuel lean conditions but over-predict considerably at fuel rich conditions with CO₂.

2. Turbulent flame speeds/structure with H_2O/CO_2 dilutions

Reactor-assisted turbulent slot (RATS) burner

10 cm by 1 cm rectangular slot

- Methane/air pilot flame ٠
- OH PLIF for flame imaging

Experimental study:

- CH_{4}/Air flames with CO_{2} and $H_{2}O$ dilution
- Moderately intense turbulence (up to $Re_{\tau} \sim 170$)
- Dilution at either variable T_{ad} or constant T_{ad}

			CH₄/Air	$T_0 = 450 \text{ K},$	p=1 atm, U	/ = 15 m/s
		_ [φ	Dilution	$T_{ad}(\mathbf{K})$	S_{L} (cm/s)
$Dilution = \frac{X_{Diluent}}{1}$	temperature – dilution"		1.0	None	2304	70.6
$X_{Fuel} + X_{Air} + X_{Diluent}$		ך [1.0	20% H ₂ O	1992	28.4
			1.0	15% CO ₂	2014	25.9
		r	0.9	$(N_2 \text{ only})$	2025	40.9
Add N. for each case	"Constant flame temperature dilution"		0.9	10% H ₂ O	2025	40.0
Add N_2 for each case \leftarrow		4	0.9	10% CO ₂	2025	34.6
until I _{ad} is matched			0.9	20% H ₂ O	1822	20.5
			0.9	20% CO ₂	1822	16.8

Determination of S_T

- (1) Find inner flame surface, set unburned region to c = 0 and burned to c = 1
- (2) Create average of progress variable for entire run (500 images)
- (3) Trace c = 0.1 contour to find perimeter
- (4) Evaluate turbulent flame speed (S_T) through mass conservation
- More consistent than previous method of using PDF of flame perimeters

Scaling of Dilution Effects

- Damkohler's original scaling: $S_T/S_L = (u'/S_L)^{0.5} (l/l_F)^{0.5}$
- Modify using Sc = 1 and $l_F = \alpha/S_L$
- Modified Damköhler scaling :

$$S_{T,diluted} = S_{T,standard} \left(\frac{S_{L,dil}}{S_{L,std}}\right) \left(\frac{Re_{T,dil}}{Re_{T,std}}\right)^{0.5} \left(\frac{Le_{dil}}{Le_{std}}\right)^{-0.5}$$
Flame speed Turbulence Thermo-diffusivity contribution contribution

Variable flame temperature with Dilution

- Effects of increased dilution are apparent even at a glance
- Clear lengthening of the flame can be seen at higher dilution levels

Variable T_{ad} Dilution

$CH_4/Air, T_0 = 450 \text{ K}, p = 1 \text{ atm}, U = 15 \text{ m/s}$					
φ	Dilution	$T_{ad}(\mathbf{K})$	S_{L} (cm/s)		
1.0	None	2304	70.6		
1.0	20% H ₂ O	1992	28.4		
1.0	15% CO ₂	2014	25.9		

Variable T_{ad}

- Large reduction in S_T for both CO_2 and $H_2O^{-\frac{3}{2}}$
- CO₂ dilution is noticeably stronger

$$S_{T,diluted} = S_{T,standard} \left(\frac{S_{L,dil}}{S_{L,std}}\right) \left(\frac{Re_{T,dil}}{Re_{T,std}}\right)^{0.5} \left(\frac{Le_{dil}}{Le_{std}}\right)^{-0.5}$$
Scaling Measured
20% H₂O $\downarrow 60\% \uparrow 0.2\% \uparrow 2.1\% \longrightarrow \downarrow 59\% \downarrow \sim 59\%$
15% CO₂ $\downarrow 63\% \uparrow 6.0\% \uparrow 4.0\% \longrightarrow \downarrow 59\% \downarrow \sim 55\%$
 $\uparrow S_T/S_L$

Thermal effect is the largest contribution with diultions.

Constant Flame temperature with Dilution: $T_{ad} = 2025 \text{ K}$

• Effects of increased dilution are much more nuanced at fixed T_{ad}

Constant T_{ad} =2025 K with Dilution

$CH_4/Air, T_0 = 450 \text{ K}, p = 1 \text{ atm}, U = 15 \text{ m/s}$					
φ	Dilution	$T_{ad}(\mathbf{K})$	S_L (cm/s)		
0.9	$(N_2 \text{ only})$	2025	40.9		
0.9	10% H ₂ O	2025	40.0		
0.9	10% CO ₂	2025	34.6		

Constant T_{ad}

- Water has almost no discernible effect
- Slight (~12%) drop in S_T for 10% CO₂

• Scaling analysis:

$$S_{T,diluted} = S_{T,standard} \left(\frac{S_{L,dil}}{S_{L,std}} \right) \left(\frac{Re_{T,dil}}{Re_{T,std}} \right)^{0.5} \left(\frac{Le_{dil}}{Le_{std}} \right)^{-0.5}$$
Scaling Measured
10% H₂O
10% H₂O
10% CO₂

$$V^{2.1\%} \uparrow 0.0\% \downarrow 0.3\% \longrightarrow \downarrow 2.3\% \downarrow \sim 0\%$$

$$V^{-0\%} \downarrow 15\% \uparrow 3.9\% \uparrow 1.3\% \longrightarrow \downarrow 11\% \downarrow \sim 12\%$$

Chemistry turbulence diffusion

At the same flame temperature, chemistry plays a dominant role

Flame Surface Density

 We can also examine the turbulent flame brush as a whole through the flame surface density:

$$\Sigma(c) = \frac{1}{n} \sum_{i=1}^{n} \frac{L_i(c)}{A_i(c)}$$
, n: num. of images

- As an example, $\Sigma(c = 0.45)$ is the combined length of all the flame edges in the region between c = 0.4 and c = 0.5, divided by the area of the region and the number of images
- $\Sigma(c)$ decreases by 15-25% for variable flame temperature dilution
- At constant T_{ad} :
 - $\Sigma(c)$ nearly collapses for CO_2 addition due to opposing increases in flame brush size and flame wrinkling
 - Water slightly reduces $\Sigma(c)$ in the upper region of the brush (c > 0.6)

C. Cohé et al., Proc. Combust. Inst. 32 (2009) 1803-1810

Constant Flame temperature with Dilution: $T_{ad} = 1822 \text{ K}$

0% Dilution $T_{ad} = 1822 \text{ K}$ 20% H₂O Dilution T_{ad} = 1822 K 20% CO₂ Dilution $T_{ad} = 1822$ K

$T_{ad} = 1822 \text{ K Dilution}$

$CH_4/Air, T_0 = 450 \text{ K}, p = 1 \text{ atm}$				
φ	Dilution	$T_{ad}(\mathbf{K})$	S_L (cm/s)	
0.9	$(N_2 \text{ only})$	1822	23.2	
0.9	20% H ₂ O	1822	20.5	
0.9	20% CO ₂	1822	16.8	

- Water dilution is impactful beyond what the scaling predicts
- Is this an actual trend caused by turbulence-chemistry interactions?

$$S_{T,diluted} = S_{T,standard} \left(\frac{S_{L,dil}}{S_{L,std}}\right) \left(\frac{Re_{T,dil}}{Re_{T,std}}\right)^{0.5} \left(\frac{Le_{dil}}{Le_{std}}\right)^{-0.5}$$
Scaling Measured
20% H₂O $\qquad \downarrow 12\% \qquad \uparrow 0.1\% \qquad \downarrow 0.2\% \longrightarrow \downarrow 12\% \qquad \downarrow \sim 29\%$
20% CO₂ $\qquad \downarrow 27\% \qquad \uparrow 7.2\% \qquad \uparrow 2.7\% \longrightarrow \downarrow 20\% \qquad \downarrow \sim 25\%$

T_{ad} = 1822 K Dilution

- At 20% dilution, CO₂ and H₂O produced similar S₇ values (approximately 25% lower than the undiluted case)
- However, the CO₂ flame surface density is noticeably less
- This is primarily due to differences in the area between c contours (larger for CO₂) rather than differences in flame wrinkling

Scaling of S_T for All Conditions

- Power fit to current data: $S_T/S_L = 2.3(u'/S_L)^{0.42}$
- Kobayashi fit for CH_4 : $S_T/S_L = 2.9(u'/S_L)^{0.38}$

H. Kobayashi, Exp. Therm. Fluid Sci. 26 (2002) 375-387

$$S_{T,diluted} = S_{T,standard} \left(\frac{S_{L,dil}}{S_{L,std}}\right) \left(\frac{Re_{T,dil}}{Re_{T,std}}\right)^{0.5} \left(\frac{Le_{dil}}{Le_{std}}\right)^{-0.5}$$

3. A new design of Axisymmetric Reactor-Assisted Turbulent (ARAT) Burner for Turbulent Flame Studies at Higher Reynolds Numbers and with EGR Effects

Co-flow Axisymmetric Reactor-Assisted Turbulent (CARAT) Burner

- 15 mm central jet diameter (CH₄/Air)
- Inner pilot flame (have tested CH₄/Air)
- Outer vitiated co-flow (15cm in diameter, tested for CH_4 /Air and H_2 /Air)

ARAT vs RATS

For same flow rates (450 LPM air, 47 LPM CH₄, $\phi = 1.0$, $T_{exit} = 300$ K)

RATS (100 mm by 10 mm)

- *U* = 8.3 m/s
- *Re_{bulk}* = 9500
- $Re_T = 172$
- T_{env.}=300 K

ARAT (15 mm diameter)

- *U* = 47.0 m/s
- $Re_{bulk} = 44000$
- *Re_T* ≈ 1758
- T_{coflow}=up to1900 K
- High higher turbulent intensity
- More turbulent flame regimes accessit
- •Capable of more extreme conditions w EGR effects due to vitiated co-flow

Conclusions

- The high pressure flame speeds of CH₂O flames are measured for the first time.
- HCO prompt reaction affects the burning velocity and radical pool of flames. The updated HP-Mech improved the flame speed prediction.
- CO₂ dilution strongly affects the radical production via HCO(+M) =H+CO(+M) reaction. Existing models are not able to predict the high pressure flame speeds on CH₂O flames with CO₂ dilution.
- In addition to the thermal effect of H_2O/CO_2 dilution, the chemistry effects also significantly reduce the turbulent flame speeds of CH_4 /air flames.
- The lower the flame temperature, the higher the kinetic effects of H_2O/CO_2 dilution on flame speeds.
- At lower flame temperature, the kinetic effect H_2O is increased and comparable to that of CO_2 .

Reaction sensitivities with CO₂ dilution

Fuel lean $\Phi=0.7, 20\% CO_2$

Fuel Rich $\Phi=1.4$, 20% CO₂

- Sensitivity of HCO+M=CO+H+M increases in fuel rich conditions with CO₂
- Sensitivity of H+O₂+M=HO₂+M and CO+OH=CO₂+H decrease in fuel rich conditions with CO₂
- Suggesting that collisional energy transfer in HCO+M=CO+H+M may not be well characterized for CO₂

Validation of previous experiments at 1atm

• The new experiments have reduced uncertainty due to high speed imaging improvement

J. Santner, F.L. Dryer, Y. Ju, Proc. Combust. Inst. 34 (2013) 719–726.

Effects of Exhaust Gas Recirculation (EGR) on Turbulent Combustion Emissions in Advanced Gas Turbine Combustors with High Hydrogen Content (HHC) Fuels

Robert P. Lucht, Jay. P Gore, Yiguang Ju and Michael Mueller

Maurice J. Zucrow Laboratories School of Mechanical Engineering Purdue University West Lafayette, IN Dept. of Mechanical and Aerospace Engineering Princeton University Princeton, NJ

DOE Award No. DE-FE0011822

National Energy Technology Laboratory University Turbine Systems Research Program

2016 UTSR Workshop, Blacksburg, VA November 1-3, 2016

Outline of the Presentation

- Yiguang Ju Chemical kinetics with EGR effects, Reactor Assisted Turbulent Slot (RATS) burner studies at atmospheric pressure
- Bob Lucht and Jay Gore: Premixed Axisymmetric Reactor Assisted Turbulent (PARAT) burner, CARS, OH PLIF, and PIV Measurements
- Michael Mueller Advanced numerical modeling of the RATS and PARAT burners

Acknowledgments: Purdue Effort

- PhD student Dong Han, postdoctoral research associate Aman Satija
- Jupyoung Kim for help with PIV measurements, Hasti Veeraraghava Ragu for help with PARAT burner development
- DOE Program Manager Mark Freeman

Atmospheric Pressure PARAT Burner Studies

- Measurements performed in CH₄/air/CO₂ flames with same adiabatic flame temperature and Re=10,000, but different levels of CO₂ addition, flames 1, 2, and 3 had 0%, 5%, and 10% CO₂ addition
- Equivalence ratio adjusted to maintain same adiabatic flame temperature
- Dual-pump CARS measurements of temperature, O₂, and CO₂ performed to characterize flame structure
- High-speed (4 kHz) OH PLIF was performed to characterize the flame structure
- Stereo PIV was performed to characterize boundary conditions for advanced numerical simulations

Experiment, RATS Burner

• <u>Reactor Assisted Turbulent Slot burner (RATS burner)</u>¹

- Heat large flow rates (1000 LPM) up to 700 K with CO2/H2O/N2 dilutions
- ~ 55 cm heated length, 100 × 10 mm exit cross-section ($D_H \approx 18$ mm)
- Two turbulence generators^{2,3}, homogeneous isotropic turbulence confirmed by hot-wire anemometry
- High Reynolds number (Re_{bulk} > 10,000)

¹S. H. Won, B. Windom et al, Combust. Flame 161 (2014) 475-483. ²Coppola, G., and Gomez, A., *Experimental Thermal and Fluid Science*, Vol. 33, 2009, pp. 1037-1048. ³Venkateswaran, P. *et. al., Combustion and Flame., 158, 2011, 1602-1614*

PARAT Burner

Piloted axisymmetric reactor assisted turbulent (PARAT) burner

PARAT Burner

 H_2 piloted CH_4 /air flame specification

- CO₂ addition increases the visible flame length
- More local extinctions are observed with increasing of CO₂ additions

Visible Images at 0.5 ms exposure time

PARAT Burner

H₂ piloted CH₄/air Flame specification

Flame #	1	2	3
Reynolds number		10000 ± 50	
Adiabatic Temperature(K)		2030 ± 50	
Equivalence ratio	$\textbf{0.80}\pm\textbf{0.02}$	$\textbf{0.84} \pm \textbf{0.02}$	$\textbf{0.89} \pm \textbf{0.02}$
CO ₂ % by total mass	0.0	$\textbf{5.0}\pm\textbf{0.1}$	$\textbf{10.0} \pm \textbf{0.1}$
Lewis number	0.99	0.98	0.97
Laminar flame speed (cm/s)	33.7	29.7	24.9

Flames are designed to minimize thermal and transport effects on NO formation

PARAT Burner: Centerline Temperature Profiles

Flame #	Flame length x/D*	Unburned reactant length x/D	Flame brush thickness Δx/D**
1	5.17	1.39	3.78
2	6.28	1.39	4.89
3	7.39	1.39	6

*Flame length is defined as the distance from burner exit to the location $\overline{C} = 0.99$ \overline{C} is the mean progress variable

**Flame brush thickness is defined as the width from leading edge $\overline{C} = 0.01$ to trailing edge $\overline{C} = 0.99$

PARAT Burner: Centerline Temperature Histograms

PARAT Burner: Radial Temperature Profiles

PARAT Burner: Comparison with Wrinkled Flame Theory

PARAT Burner: 4 kHz OH PLIF Measurements

PARAT Burner: 4 kHz OH PLIF Measurements

PARAT Burner: 4 kHz OH PLIF Measurements

x/D

44

PARAT Burner: PIV Measurements, Flame 1

With upper turbulence generator plate

PARAT Burner: PIV Measurements, Flame 1

Without upper turbulence generator plate

PARAT Burner: IR Imaging Measurements

0% CO2 10% CO2 4.38 ± 0.08 μm spectral region

PARAT Burner: Comparison of Temperature Profiles from CARS and IR Emission Measurements

PARAT Burner: Comparison of Temperature Profiles from CARS and IR Emission Measurements

PARAT Burner Studies: Conclusions

- Dual-pump CARS temperature measurements reveal significant differences in structure for flames 1, 2, and 3 ,even though the measured peak mean temperatures are virtually the same for all three flames. Bimodal structure of histograms clearly evident in the inner flame.
- OH PLIF imaging reveals major differences in flame structure for flames 1, 2, and 3. As the percentage of added CO₂ increases, the occurrence of isolated pockets of unreacted premixed gas in the flame brush increases, as does the apparent size of these gas pockets.
- Stereo PIV was performed to characterize boundary conditions for advanced numerical simulations, analysis still in progress.
- Comparison of CARS and IR imaging show consistent temperatures for all three flames.

PARAT Burner Studies Future Work

- High speed CH PLIF, simultaneous OH and CH PLIF
- Continued interaction with Princeton on numerical modeling of the PARAT burner
- Operation of the PARAT burner at high pressure, initial experiments were performed at high pressure last year
- NOx, CO emission measurements from the highpressure for comparison with numerical modeling

Cross-sectional View of PARAT Burner into the Windowed High-Pressure Test Rig

PARAT Burner Operation in HP Test Rig

P & ID

Control panel

H₂ pilot flame

Natural gas flame, Re=100,000, ψ =0.9

