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Background—QuesTek Innovations LLC

e Founded 1997 (Prof. Greg Olson, cofounder)
o 23 employees (13 with PhD, 6 with MS, 4 with BS)

A global leader in computational materials design:

— Our Materials by Design® expertise applies the Integrated Computational
Materials Engineering (ICME) technologies and Accelerated Insertion of
Materials (AIM) methodologies to design an deploy innovative, novel materials
faster and at less cost than traditional methods

— Aligned with the Materials Genome Initiative
e« 12 US patents awarded (and 18 US patents pending)
» 25 foreign (and 21 foreign pending)
e Create IP and license it to producers, processors, OEMs, end-users
4 commercially available steels

* Designing novel Fe, Al, Ti, Cu, Ni, Co, Nb, Mo and W based alloys
for government and industrial sectors
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QuesTek’s Integrated Computational Materials Engineering approach

“Integrated Computational Materials Engineering (ICME) methods involve the holistic application of different computational models
across various length scales to the design, development, and rapid qualification of advanced materials.”
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Leading applications of QuesTek alloys

Ferrium S53 roll

Ferrium S53 steel pin for C-5
In flight service on U.S. Air Force platforms A-  aircraft
10, C-5 and T-38 to replace existing corrosion-

prone steels.
From materials design to flight in 10 years

Meets strength and corrosion
resistance requirements
without need for toxic
cadmium coating

Ferrium M54 steel ‘
Navy qualified landing gear “hook shank” EEEMUEVEREINEL RS R eeie L
with >2x life vs. incumbent alloy; cost »

savings of $3 Million to fleet.
From materials design to flight in 7 years

NAVAIR Public Release #2014-712
Distribution Statement A- "Approved for
public release; distribution is unlimited"

m C61 "I

: anaft for W =
- Ferrium C61 and C64 steel Egheg;%t.n@@& é\\
Being qualified for next generation helicopter
transmission shaft and gears for U.S. Navy and
U.S. Army, replacing existing steels used for 50
years

20% increase in power density
(power to weight ratio) vs.
incumbent steel
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DoE SBIR HEA Program Overview

« Program goal: Test the feasibility of HEASs for
iIndustrial gas turbine (IGT) blade applications

e QuesTek’s approach: Use ICME tools to design and
prototype HEA blade alloys

 Phase |: Build foundational ICME thermodynamic
database (CALPHAD)

e Phase ll Year 1: Use database and other ICME tools
to design HEA and produce prototype heat

 Phase |l Year 2: Characterize performance and
iterate design, Peter Liaw as collaborator
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High Entropy Alloys (HEAS)

« HEAs are stable single phase
FCC, BCC, or HCP solid
solutions at or near equiatomic
compositions in multicomponent
systems (n>=5)

— BCC or FCC: AICoCrCuFeNi and its
derivatives (add Ti,Mo,V,Mn,Nb etc.)

— Refractory BCC (MoNbTaTivVW)
— HCP (AILIMgScTi, DyGdHoTbY)

e HEASs are disordered solid
solutions

Zhang, Yong, et al. "Microstructures and properties of high-entropy
alloys. "Progress in Materials Science 61 (2014): 1-93.
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HEA Properties Relative to Other Materials

Metallic

asses

Nickel-based ]
super alloys |
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Yield Strength, oy (MPa)
Gludovatz, Bernd, et al. Science 345.6201 (2014): 1153-1158.
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HEA Properties Relative to Other Materials
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Three Most-studied High-entropy Alloys (HEA5s)
' HEA-1: CoCrFeMnNi —e— Haynes 230
QA VIE A-2: Al_CoCrCuFeNi —4— Hastelloy X

—p—Inconel Alloy 600
L -HEA—S: Refractory HEAs 304 Stainless Steel
(e.g., MoNbTaW)
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Behavior of Single-phase High-entropy Alloys (HEAS): An overview", in preparation.
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HEASs as an Industrial Gas Turbine Alloy

Consider HEAs as a component in an IGT blade or vane alloy

— Stability at higher temperatures than Ni/Ni;Al
— Higher strength

— Better thermodynamic compatibility with bond coat

HEAs have been demonstrated to be made as a single crystal
(Bridgman solidification) and an FCC HEA in equilibrium with

Tsai, Ming-Hung, et al. "Morphology, structure and composition of precipitates in Al, ;CoCrCu, sFeNi high-entropy alloy."
Intermetallics 32 (2013): 329-336.

Ma, S. G., et al. "A successful synthesis of the CoCrFeNiAl, 5 single-crystal, high-entropy alloy by bridgman
solidification." JOM 65.12 (2013): 1751-1758.
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IGT HEA System Design Chart

PROCESSING STRUCTURE PROPERTIES
Protective Multi-Component
; Oxide
High Temperature - ALO; and/or Cr,0; High Temperature
Service « Piling-Bedworth Ratio (1-2) Oxidation Resistance
i « Multi-component sluggish diffusion
Quench Matrix
=5 elements Hiah T t
i Body-Centered Cubic g emperé.;l.ure
— [ — Solid Solution Strengthening Phase Stability a
| Solution I_\ Internal Lattice Strain / )
L Treatment I 3
S — / Creep Resistance >
~ 1 / g
Hot Working \—ILStrengthening Precipitates & ;
L} L} L} L} L L} L | J
i Strength r?
Homogenize Grain Size
' Grain Pinning Dispersion (MX_..)
VAR Low Micro/Macro Ductility and
i Segregation Toughness
Sluggishrefractory elements
ESR
i . iy Fatigue Resistance
Inclusions and Impurities
VIM
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Path to HEA ICME Design

2.

3.
4.

« Develop structure-property models
1.

Predict high-temperature stability from CALPHAD
databases

Model solid solution, grain size, and (possibly) precipitation
strengthening

Utilize creep metrics to predict relative creep resistance
Predict resistance to high-temperature oxidation

 Produce lab-scale prototype buttons
o Characterize critical properties
 Recalibrate models as needed
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Current empirical models for predicting HEA
stability are overly simplistic

« Still some uncertainty as to particular " C
mechanism for formation -
|5 8 g &
« Hume-Rothery parameters often used as °I
indicators: atomic mismatch (o) and
enthalpy of mixing (AH,,;,)

(KJ/mol)

HEA @

]
7]

AHml‘x

20 No HEA
« Fundamentally a competition between : ¢ .
-30 I

Gibbs energy of formation and driving - 7 S ———
force for ordering/phase separation 8 %

N . N 2
AHmiX — Z 4A ;néXCiCj 0 = \ Zi,\i]Ci 1 - Ti/ (ZC;’I}))
1=1,i#j

Zhang, Yong, et al. "Microstructures and properties of high-entropy alloys.
"Progress in Materials Science 61 (2014): 1-93.
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CALPHAD takes into account both enthalpy and entropy
of all phases, enabling full phase equilibria prediction

Observed FCC HEA - CoCrFeMnNi
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Zhang, F., et al. "An understanding of high entropy alloys from phase diagram calculations." Calphad 45 (2014): 1-10.
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Primary Design Challenge:
Limited CALPHAD Databases

« CALPHAD databases have been built with a focus on specific corners
of composition space (e.g. Fe, Ni, Al), shown in green

« HEAs are in the center of composition space, and extrapolations of
CALPHAD models to these regions are likely limited, due to lack of
data

Typical alloys

Weak ternary interactions;
safe to ignore

HEAS

Strong ternary interactions;
need to model

Ternary Quaternary
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Density Functional Theory for HEA Thermodynamics

* Physics-based first-principles predictions of 408 ternary
enthalpies of mixing in FCC and BCC solid solutions
— Use the special quasi-random structure (SQS) approach
— Elements considered: Al Co Cr Cu Fe Mn Mo Nb Ni TiV W
— To add in follow-up work: Hf Mg Pd Ru Ta Zr...

\ ﬂ ST E U
NCSA g - L
Performed on the iForge : , |
high-performance computing
cluster at the National Center for
Supercomputing Applications
(UIUC)
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Sparsity of ternary interaction parameters reduced
after CALPHAD database update

Attractive / Repulsive / No value

FCC Fe-X-Y

BCC Fe-X-Y
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How well do CALPHAD databases predict known HEAsS?

e In the Al-Co-Cr-Cu-Fe-Ni-Ti-V-Nb-Mo-Mn-W system,
31 BCC and 36 FCC single-phase HEA-forming
compositions (of 25 components) reported in the
literature

 Assume any phase fraction = 0.9 predicted by
CALPHAD is a prediction of HEA formation

Agreement

TCFE®6 24%
TTNI7 24%
QT-HEA 55% Effect of CALPHAD + DFT
m LI :T;- H® Exploration OfS-:%Zir:::faﬁ?gzzisex:\A-Z;:;e Applications
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IGT HEA System Design Chart
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High-temperature Stability of HEA Compositions (#1)

The solidus is the highest temperature before melting begins

Calculated solidus temperatures for all 5-component equiatomic compositions (3003) with
CALPHAD

— ~100 are single phase BCC HEAs (phase fraction > 0.8)
Histogram of all compositions and BCC HEA compositions

BCC HEAs demonstrate higher average solidus temperatures
Current

Ni Superalloys
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Experimental validation currently underway

Al
Al
Al
Al
Al
Al
Al

e

*  Model: MAM-1
+ Serial: 120
+  Melts samples

up to approx.

15g
* Reaches

Temperatures up
to 4000°C

Cr Mo Ti V
Cr Fe Mo V
Cr Mn Mo V
Cr Fe Mn V
Cr Mn Ti V
Cr Mn Mo Ti
Cr Mn V W
[ Arcmeter |

Amount of all phases [mol]

Vacuum encapsulated
and homogenized at

AAAAAA

1100°C

1100°C
single phase

0 500 1000 1500 2000 2500

Temperature [*C]

Use CALPHAD to predict
processing temperatures

3000

AICrMoTiV, as-homogenized,
single phase with minor Al oxides
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Develop Structure-Property Models for
Further Screening of Compositions (#2-3-4)

o Strength: Solid solution, grain size, (and precipitate
strengthening)

e Creep: Vacancy diffusivity

e Oxidation: Alumina and chromia formation

Build upon QuesTek’s experience with Ni Superalloy
design and modeling

DE-SC0009592 SBIR Program PHASE II.A, DOE PM: Steve Richardson
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HEA Strength Modeling (#2)

General alloy strength model framework:

Otot = Oss + Ogp + Oppyt

/1N

2
3/, /3 [Solid solution Grain boundary Precipitation
Oss = z B, “X; strengthening strengthening strengthening
; 1
L J—
Fleisher/Labush Aag - kyd 2
Hall-Petch
. ' ' ?
Which functional form to use~ o.. example model:
* Nohost .at.om = no ?ase strength Toda-Caraballo et al. Acta Materialia 85 (2015)
* Mechanistic uncertainty
B; = 3”HEA6?/BZ
. =Y X.u:
Shear modulus  MuEa = 2i Xilki Obtain
da 1 from DFT

e

. ) L €: = -
Atomic misfit i dX,-a

e Z = another fitting constant (T-dep, etc.)

. . . . . Fleischer, R. L. Acta metallurgica 11.3 (1963): 203-209

m LIE S I — H® Exploration of High-Entropy Alloys for Turbine Applications Labusch, Rea. physica status solidi (b) 41.2 (1970): 659-669
P P Toda-Caraballo, Isaac, and Pedro EJ Rivera-Diaz-del-

UTSR Program Review Meetmg Castillo." Acta Materialia 85 (2015): 14-23.
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Vacancy Diffusivity in Matrix as Creep Metric (#3)

Reed creep merit index, M eep:

— Large amount of slow diffusing elements is better for creep
resistance, slows dislocation motion

— Assume constant and chemistry independent dislocation density
— Good for ranking materials

Moooy = > =
creep — i Ei
« Take reciprocal for the effective vacancy diffusivity, D:
1
D =
e Mcreep

« D, taken from CALPHAD mobility database

« Will confirm HEA creep mechanism in collaboration with
Peter Liaw at U.Tenn.
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Surface Oxidation Modeling (#4)

 Ciriteria for continuous protective oxide formation (e.g. Al,O; and Cr,0O,)
« All input parameters derived from CALPHAD databases

Y8 > Y = (—N
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Model agrees well with experimental data for benchmark alloys
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IGT HEA System Design Chart
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Castable Single Crystal Ni-based
Superalloys for IGT Blades

Acknowledgment: "This material is based upon work supported by the
Department of Energy under Award Number(s) DE-SC0009592.”

SBIR Program PHASE II.A, DOE PM: Steve Richardson

e~
N wes

A Division of Precfsion Casipants Corp.

SIEMENS
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Optimize alloy composition and processing using
ICME models to predict critical properties

Lig. Density Difference

Better processability

Coarsening Rate

Better creep resistance

Exploration of High-Entropy Alloys for Turbine Applications

Aueslier
UTSR Program Review Meeting
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Alloy performance proven in prototype castings and
creep charcterization

Equivalent creep performance
to high-Re alloys

Freckle-free castability

850
750 e OQTSX
2 -+-PWA1483
650 \ ~-CMSX7
& 550 ---CMSX8
= PWA1484
':' 450 CMSX4
a Rene N5
5350 +
n No Re
- 250 1 1 wt% Re (QTSX)
‘;: 1.5 wt% Re
x 150
g 50
d T 1 1
22 24 26 28 30 32

Questek Alloy

L-M Parameter [T(20+log(t))/1000]

Exploration of High-Entropy Alloys for Turbine Applications

Aueslew
UTSR Program Review Meeting
INNOVATIONS LLOC November 2, 2016 p. 28




WastePD: Center for Performance
and Design of Nuclear Waste Forms

and Contalners

A DOE Energy Frontier Research Center

Program Manager: Design Synergy Lead:
Gerald S. Frank_el Greg Olson
Fontana Corrosion Center QuesTek Innovations LLC

The Ohio State University

EEEEEEEEEEEE Off f ﬂ
ENERGY s ST




WastePD Mission

Understand the fundamental
mechanisms of waste form

performance, and apply that
understanding to develop tools Modsling

Design

fOr dGSIgn Of WaSte fOrmS Wlth Characterization

Localized Chemistry

improved performance. Interfaces

Passivation

» Containers are metallic: steel
underground tanks, SS dry storage Spent
casks, CRA canisters for final Nuclear Fue!
disposal. Containers also must be o
stable for long periods of time. 8 -g,d\c“’

https://efrc.engineering.osu.edu



Summary and Next Steps

QuesTek Innovations is using ICME tools and T

technologies to develop HEAs for high- CEE R LS
performance applications

JONVIWNHOIH3d

VIM

FCC Fe-X-Y

QuesTek employed high-performance
computing to accelerate development of an
HEA CALPHAD database

Modeling and experimental work will continue  NvERerry oF |
(with Peter Liaw at U.Tenn.), culminating in a TENNESSEE T
preliminary HEA design for industrial gas turbine NORVILEE T
applications
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HEA Properties Relative to Other Materials
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Behavior of Single-phase High-entropy Alloys (HEAS): An overview", in preparation.
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Poor CALPHAD description for solid solutions at
equiatomic compositions due to lack of ternary parameters

Cc
G* = Z X G — TSt + Gy
:

Redlich-Kister polynomial for solid solution mixing energy in CALPHAD
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Jiang, Chao. "First-principles study of ternary bcc alloys using special quasi-random structures.” Acta materialia 57.16 (2009): 4716-4726.
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Special Quasi-random Structure (SQS)

 SQSs are specially constructed supercells designed to mimic a chemically
disordered solid solution locally around each atom

 Can be used to simulate ternary solid solutions in DFT

Xp= 102,
Xp=Xc=1/4
o
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