Overview of Pressure Gain Combustion Studies at NETL

University Turbine Systems Research Project Review Meeting

Overview

- DOE Program Goals
- CVC Advantages and RDE Challenges
- Lab-Scale and Bench Scale Sector Rig
- Summary

Advanced Gas Turbines Program Goals

- Advanced combined cycle turbine
 - Applicable to natural gas and H2
 - T3 of 3,100° F (~1900 K)
 - Adv. components: pressure gain combustion, advanced transition, air foils w/ decoupled thermal & mechanical stresses
 - Delivers another \$20/T reduction in CO2 capture cost
 - NG CC (LHV) efficiency approaching 65%

Constant Pressure vs Constant Volume Combustion

- Conventional gas turbines rely on Constant Pressure Combustion (Brayton cycle)
 - Deflagration-slow combustion
 - High temperature with constant pressure.
- Constant Volume Combustion (PDE, Humphrey Cycle)
 - Detonation-fast combustion
 - High temperature with *INCREASED* pressure produces more available work

Continuous detonation produces more available work from the same heat input (compared to a conventional combustion system) resulting in a system with greater efficiency.

NETL PGC Research Focus

- Low loss inlet / injector
 - Reduce impact from shockwave and backflow due to detonation.
 - Design driven by computational modelling and bench scale experiments

• Combustion Efficiency

• Inlet/Injector must rapidly mix fuel-air to ensure complete combustion and maintain low emissions (NOx, CO)

Air Force Research Laboratory 5.6" RDE modified for NETL High Pressure Combustion Lab

- Transition quasi-steady exhaust flow to maintain turbine efficiency
 - Conventional turbines designed for steady flow may require "transitioning" the quasi-steady flow from the RDE.

NETL PGC Computational / Experimental

- Fundamental studies of detonation/shock waves and low loss injectors. (a-single injector rig, b-shock wave in, (not shown)-linear RDE analog)
- Lab-scale RDE with variable backpressure, fuel composition and preheat. (c-RDE installed in high pressure combustion test facility)
- Computational studies utilizing experimental studies to anchor code and drive design decisions. (d-nonpremixed, two wave simulated RDE)

NETL Lab Scale RDE

• Rig capability

- Natural gas, hydrogen, propane, ethane (0.1 kg/sec)
- Air (1.2 kg/sec)
- 20 atm, 800 K air preheat

• Experimental focus

- Flow rate
- Equivalence ratio
- Fuel Composition (H2 / NG)
- Air Preheat (600 K)
- Operating Pressure

Start-Up Issues

- With a contained exhaust start-up dynamics can be severe.
 - Reactants originally introduced with delayed ignition
- Flow through initiator had a larger than expected impact.
- Vary flow rate and spark timing to reduce start-up to manageable level.
- Added multiple torches immediate downstream of RDE •

2

PCB-Initiator-Fuel PCB-A1

Voltage

Spark-Pulse

50 psig

2.5

Summary of Test Conditions

- Hydrogen air preheated temperature 140 390 F
- Eq. Ratio range ~ 0.6 1.0
- Air flowrates ~ 25,000 40,000scfh

Example Data Analysis - H2 in Air

System Distributed Pressure Measurements

NATIONAL

ERGY

Equivalence Ratio 0.6 – 1.0 / H2 in Air

0.6

• Pressure = 1.1 psig = 3/17/2016 + 3/23/2016 + 5/11/2016 + 5/12/2016= 5/26/2016 + 8/24/2016 = 8/25/2016 + 9/8/2016

0.7

 $\begin{array}{cccc}
4 & \textcircled{O} \\
3 & \textcircled{O} \\
2 & \textcircled{O} \\
1 & \textcircled{O} \\
\end{array} \qquad \begin{array}{c}
\diamondsuit{O} \\
\diamondsuit{O} \\
\textcircled{O} \\
\hline
\end{array}{
}$

I-1-1

D

1.1

Distribution A: Approved for public release; distribution is unlimited

0.9

Equivalence Ratio (peak)

0.8

Equivalence Ratio 0.6 – 1.0 / H2 in Air

• Air Flow = 40,000 scfh, Operating Pressure = 1.1 psig

- Increase in frequency (wave speed) with φ
- Relative consistency throughout the RDE

Equivalence Ratio 0.6 – 1.0 / H2 in Air

Ν

Time (sec)

0

• Air Flow = 40,000 scfh, Operating Pressure = 1.1 psig

General Trends

- Increase in RMS with ϕ • for A1 and C4
- Max at C4 is less than • A1
- Fuel and Air plenum peak at leaner equivalence ratio

Influence of Increasing Operating Pressure

• H2/Air, 40000 scfh, Air Inlet = 140° C, $\phi = 0.8$

Distribution A: Approved for public release; distribution is unlimited

15

NATIONAL

ENERGY TECHNOLOGY

Operating Press 1.1 psig

RDE @5psig Operating Pressure

Distribution A: Approved for public release; distribution is unlimited

NATIONAL ENERGY

TECHNOLOGY LABORATORY

Effect of Inlet Air Temperature

140° F Inlet Air Temperature

400°F Inlet Air Temperature

Time(s)

Air Flow = 40,000 scfh Operating Pressure = 1.1 psig

Pending Nox Emissions Measurements

- Delayed by procurement issues
- Slow response NOx Analyzer requires samples be collected through iso-kinetic sample probe and stored in heat gas cylinders in preparation for post-test sampling
- Heated to prevent condensation and loss of water soluble NO2
- Computational Study by NRL suggest combustion physics of detonation vs detonation may or may not have a significant impact on NOx emissions
- Collaborating with AFRL on T63 tests

CFD Modeling of NETL RDE

- Validated modeling approach with experimental data from AFRL.
- Developed averaging process.
- Characterized overall thermal efficiency, pressure gain/loss, potential turbine work, etc...
- Examined loss mechanisms.
- Simulated linear RDE experiment. 0.1 mm 1.0 mm

Includes air and fuel injectors and partial manifolding Simulation shows significant interface burning (~40% of fuel). Turbulence chemistry interaction models are not valid for both deflagration and detonation zones.

stribution A: Approved for public release; distribution is unlimited

3.50#+03 3.34e+03

NETL RDE Inlet Sector Rig

- Linear RDE apparatus designed and fabricated to facilitate development of improved inlets
 - Inlet and plenum optically accessible from multiple sides
 - H2/air detonation tube connected to end of linear RDE channel
 - 3D printed inlet geometries for rapid evaluation of designs
 - Rapidly propagating pressure wave creates characteristic backflow and recovery behavior seen in full-scale, fired RDE
 - Qualitative and quantitative data can be collected nonintrusively
 - Diagnostics include dynamic pressure measurements and high-speed Schlieren imaging to evaluate inlet dynamics, acetone PLIF for fuel/air mixing within channel

Focused Schlieren of Inlet Dynamics

Effects of Detonation on Inlet

Shockwave

- Interruption time is the time required for the nominal pressure in the plenum to overcome the resultant pressure from the detonation.
- No refueling occurs during this period of time
- Contributes to inhomogeneity in $\boldsymbol{\phi}$

NATIONAL

Shock wave in inlet air plenum

• Mass flow

• Recovery time is the amount of time that the injectant flow takes to force recirculated exhaust products out of the inlet.

0.044" Gap

Some of the Inlet Designs Tested

Inlet Design	Recovery Time (ms)	Interruption Time (ms)	Backflow Length (L _{max})
0.022" Gap – Air Plenum	0.300	0.0740	0.675″
0.022" Gap – Fuel Plenum	0.320	0.0833	0.969"
0.044″ Gap	0.430	0.0860	0.942"
0.066″ Gap	0.600	0.0860	1.155″

Figure 42. Maximum backflow shown for 0.022" gap (left), 0.044" gap (middle), and 0.066" gap (right)

Summary

- Engineering scale rig operating at elevated back pressure and natural gas
 - New Horizontally mounted rig for greater optical accessibility
 - Water cooled rig for extended operations
- Linear bench scale sector rig for fundamental studies related to upstream pressure wave and backflow issues
- Computational models intended for parametric studies validated by experimental studies

Acknowedgements

- This research is funded by the US Department of Energy –Office of Fossil Energy through Advanced Combustion and Advanced Turbine Systems.
- The authors would like to thank Richard Dennis, Dan Driscoll & Patcharin Burke at DOE NETL for continued project support
- The authors would also like to thank Mark Tucker and Jeff Riley for doing all the hard work.

Questions?

Contact Info: Don Ferguson, PhD NETL-RIC Thermal Sciences Team donald.ferguson@netl.doe.gov (304) 285-4192

