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What is a sCO2 cycle?

* Closed Cycle .

— Working fluid is CO2 }@
e Cycle Type

— Vapor phase COOLING OUT
— Transcritical —
— Supercritical T,

e Supercritical CO2 has: T

o FsGo2
& 1000 ¢

Recuperated Closed
COOLING IN Brayton Power Cycle

— High fluid density
— High heat capacity
— Low viscosity —ositis —

Enthalpy (Btu/lbm)
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Why sCO2 Power Cycles?

e Offer +3 to +5 percentage

points over supercritical St abin: 5 siges 250 VW

Mitsubishi Heavy Industries Ltd, Japan (with casing)

steam for indirect coal g | T M 6T MW

Supercritical CO; turbine: 4 stages / 450 MW (300 MW,)

fired applications ™ [ o tomil

e High fluid densities lead
to compact
turbomachinery

e Efficient cycles require

significant recuperation

Third Generation 300 MWe S-CO2 Layout from Gibba, Hejzlar, and Driscoll, MIT-GFR-037, 2006
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Why Oxy-Fuel Combustion?
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Project Objectives

 Optimize the supercritical CO2 power cycle for
direct fired oxy-combustion

— Target plant conversion efficiency is 52% (LHV)

 Technology gap assessment for direct fired
plant configurations

 Develop a high inlet temperature oxy-
combustor suitable for the optimized cycle

— Target fuels are Natural Gas and Syngas
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Outline

— Phase | Progress
e Cycle Modeling
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Oxy-Combustion Plant Model
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Condensation and Recompression
Cycles
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Cycle Analysis Results

e Recompression cycle has highest efficiency
— 53.4% at 200 bar, 56.7% at 300 bar

 Condensation cycle

— 51.6% at 200 bar, 54.0% at 300 bar

— Superior in all other metrics

— Reduced recuperation (~ 50%)

— Lower combustor inlet temperature

— Higher power density (power output / flow rate)
 Both cycle configurations are compatible with an

auto-ignition style combustor for 1200 C Turbine
inlet temperatures.
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Outline

— Phase | Progress

e Chemical Kinetics
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Kinetic Model: Motivation

e The fundamental size of the combustor is
governed by the timescale of chemical
reactions

e The chemical reaction kinetics determine how
fast fuel oxidation occurs

— A detailed chemical kinetic model is required to
size the combustor

— A reduced chemical kinetic model is required for
detailed flow-field design in CFD

Swil




Kinetics Knowledge Base

Current Application

Pressure P up to 200 bar
Xco, Up to 0.96 (mostly as diluent)
Sparse data at high pressure, low CO, @
Well-Developed Mechanisms Knowledge front
P up to 20 bar
Xco, < 0.10 (mostly as product) /
Sparse data at low pressure, high CO,
>

CO, concentration

No data available at conditions relevant to this application.
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Mechanism Selection

* Primary selection criterion is accurate prediction of the
overall reaction time scales

— Drives the combustor design

— More important than other details such as peak
concentration values

e USC-Il is the clear choice based on this criterion

— Most accurate in highest pressure flamespeed and
autoignition validation comparisons

e USC-II also had good to adequate performance in low
pressure CO, studies

e USC-Il predictions should carry +/- 50% uncertainty in
this application
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Reduced Order Model

e For incorporation into a CFD model a reduced
order model was developed

 Equations based on Arrhenius rate equation
were tuned to match USC-Il model predictions

— Match autoignition delay
— Match residual CO levels
— Overall time to complete reaction

Swil




Outline

— Phase | Progress

e Preliminary Combustor Design
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Mixing vs. Kinetics Time Scales

e Time scale of reaction .
kinetics is much smaller
than physical mixing

Kinetics Models

1500

1400 -/

time scales <
e Combustion size and g
o | —Ave Temperature (K)
Iength gove rnEd by E 1200 - —Max Temperature (K)
physical mixing -

e Use of CFD with finite oo |

rate Chem Istry tO mOdel 0 20 10 60 80 00 120 140 160 180
Time (ms)
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Initial Combustor Concept

Fuel vs. oxidizer jet clocking
S

Multiple 90° Multiple 90°
O, injection jets fuel injection jets

Pressure vessel \ &\\\\\\\\\\\\\\\\\\\\\\\\\

Cold CO, —regenerative cooling

950°C CO, inlet

(jet-in-crossflow)

|

I

: Distributed reaction zone
Oxidizer premixing zone : (stabilized by autoignition)

I

I

|

———————— Centerline |
O, injection plane Fuel injection plane
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CFD Model Setup

* ANSYS CFX 16.2

e Unstructured mesh

— Boundary layer and injection
region refinement

— 4 million elements

— Mesh sizes from 2 to 17
million elements for
independence study

e Finite rate chemistry

— Extrapolated reduced order
equations
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Temperature in 45° Clocked Case

= Ave Temperature (K)

= ax Temperature (K)

Temperature (K)
=
(9]
o
o

1200

1100

1000

0.00 0.20 0.40 0.60 0.80 1.00
Axial Distance (m)
o
® RO G
2016 University Turbine Systems Research ] "“l"
11/10/2016 20 i
Workshop

mACHINERY



Change Injection Spacing

e Injection oxygen and fuel

Aioec need not be at same
location
e Auto-ignition allows even
4 Hole 45°

Clocked small concentrations of
fuel+oxidizer to react

Oxygen
Injection

Fuel
Injection

4 Hole 11.25°
Clocked
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Final Design:
Fuel Injection 24in Upstream

e Fuel well mixed throughout combustor before oxygen
e Allows hydrocarbon “cracking” before oxygen injection
e Cooler max temperatures

e Very good mixing at outlet

 Very low unburnt fuel percentage

1600

1200 = Ave Temperature (K)

== Max Temperature (K)

1'073e+003 0.00 0.50 1.00 1.50 2.00
' Distance (m)
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Preliminary Mechanical Design

 Thermal design

— Thermal
containment using g | coone
refractory

|nSU|at|ng |ayer‘ Hot Inlet Combustion Processes—)

— Cooling CO, A'r% T i e o
 Mechanical design

— Utilizes stainless
steel ANSI pipe
and flanges

e
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Outline

— Phase | Progress

e Bench-top Combustor Test
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Bench-top Combustor Test

 Small bench top test to study proof of

concept, autoignition delay, and chemical
kinetics

 Once through type system
— 200 bar pressure

e Electric heaters used to set inlet temperature

e Jetin cross flow type fuel and oxidizer
Injection
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Test Stand Loop Design

Gas Sampling &
Detection System
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Oxy-fuel Test Reactor

 Machined from Haynes 230
bar stock

* |nstrumentation standoff
tubes welded to main
combustor

 Two stage pre-heater to
achieve 925°C combustor

L ]
I n I et Haynes 230
%" O.D. x 0.093” I.D.
e \Water jacketed
J R
L ]
a S Sa I I I I I n Haynes 230 Heated via ceramic ! 3" 0.D. Tool Steel

1.25” O.D. furnace heaters (not Vi O.D. Heated via 4 knuckle
0.188" 1.D. shown) 0.120" I.D. band heaters (not
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Fuel and Oxygen Injector Design

e Precise sapphire
orifice set into
stainless steel mount

e QOrifice constriction
placed close to the

x.ﬂ'\‘.-x'# |
combustor _ ® |
e Mounted inside -
. Orifice/
welded in place Body
standoff
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Combustor Test Stand

Dynamic
Pressure Sensor

I
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Test Stand Assembly

e Testing at Thar’s

facility in Pittsburg,
PA

e QOutdoors with
remote operation
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Instrumentation

* Thermocouples in

Orange: Dynamic pressure sensor
Yellow: Thermocouple
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e Optical emission N
spectroscopy (OES)

e Utilizes a plasma
generator to identify e
chemical species

e Requires rapid thermal

guenching of sample to
halt chemical reactions

 SwRI has experience
using OES for gas
species analysis
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Test Stand Operation

e Shake down tests

— Observed auto-ignition
combustion during
shakedowns at full pressure
and 80% temperature

e Component failures
— Backpressure control valve

— Mass flow controllers

e Viton rubber does not mix
with sCO2
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Outline

 Phase Il Project Plan
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Phase Il

e Complete detailed design

* Fabricate combustor and test loop
e Shake down and commission

* Test combustor

 Phase Il duration: 3.5 years

* Partnered with Thar Energy, Georgia Tech, UCF
and GE Global Research

Swil




Detailed Combustor Design

 Develop more detailed
and accurate combustion
kinetic mechanisms

e Utilize CFD to study
combustion flow field

e Detailed thermal and

mechanical design é’ . Cooling O,
[ F|na| deS|gn for‘ e Combustion Processes™—2
manufacturing nlet % o
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Combustor Integration with
Sunshot Test Hardware

Bypacs * Turbine
— =
% Recup Y Air-fired Fre-heater Dnoy-combustor
A0
-

Pump

B* //; H-g-t.:r_éeparatnr [CH fﬁ\\ e /_T{_
L ) k N
Cooling Tower o .
‘ater Water
02 Pu
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Combustor Integration

Oxy-Combustor added
e Utilize existing Sunshot downstream of indirect heater

hardware

e Install oxy-fuel combustor

— Demonstrate a direct fired
oxy-combustor in a closed
Brayton cycle

— Evaluate combustor
performance

— Evaluate flue gas cleanup

— Indirect heater allows for
various combustor inlet

conditions to be studied Add flue gas cleanup and
water separation
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Planned Test Measurements

 Multiple OES sample locations
* Temperature measurements

e High speed pressure measurement for acoustic
phenomena

e Study water dropout and separation
* Possible measurements

— Optical access for advanced diagnostics
— Materials sample testing
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