Direct Fired Oxy-Fuel Combustor for sCO2 Power Cycles

Jacob Delimont, Ph.D.
Aaron McClung, Ph.D.
Southwest Research Institute

Marc Portnoff
Lalit Chordia, Ph.D.
Thar Energy L.L.C.

Work supported by US DOE under DE-FE002401
Outline

• Phase I Overview
 – Background
 – Project Objectives
 – Phase I Progress
 • Cycle Modeling
 • Chemical Kinetics
 • Preliminary Combustor Design
 • Bench-top Combustor Test

• Phase II Project Plan
What is a sCO2 cycle?

- **Closed Cycle**
 - Working fluid is CO2
- **Cycle Type**
 - Vapor phase
 - Transcritical
 - Supercritical
- **Supercritical CO2 has:**
 - High fluid density
 - High heat capacity
 - Low viscosity
Why sCO2 Power Cycles?

• Offer +3 to +5 percentage points over supercritical steam for indirect coal fired applications
• High fluid densities lead to compact turbomachinery
• Efficient cycles require significant recuperation

Third Generation 300 MWe S-CO2 Layout from Gibba, Hejzlar, and Driscoll, MIT-GFR-037, 2006
Why Oxy-Fuel Combustion?

- Capture 99% of carbon dioxide
- Higher turbine inlet temperatures possible
Project Objectives

• Optimize the supercritical CO2 power cycle for direct fired oxy-combustion
 – Target plant conversion efficiency is 52% (LHV)

• Technology gap assessment for direct fired plant configurations

• Develop a high inlet temperature oxy-combustor suitable for the optimized cycle
 – Target fuels are Natural Gas and Syngas
Outline

• Phase I Overview
 – Background
 – Project Objectives
 – Phase I Progress
 • Cycle Modeling
 • Chemical Kinetics
 • Preliminary Combustor Design
 • Bench-top Combustor Test

• Phase II Project Plan
Oxy-Combustion Plant Model

De-watering and Cleanup

Fuel, Oxidizer, and Combustion

11/3/2015
2015 University Turbine Systems Research Workshop
Condensation and Recompression Cycles
Cycle Analysis Results

• Recompression cycle has highest efficiency
 – 53.4% at 200 bar, 56.7% at 300 bar
• Condensation cycle
 – 51.6% at 200 bar, 54.0% at 300 bar
 – Superior in all other metrics
 – Reduced recuperation (~ 50%)
 – Lower combustor inlet temperature
 – Higher power density (power output / flow rate)
• Both cycle configurations are compatible with an auto-ignition style combustor for 1200 C Turbine inlet temperatures.
Outline

• Phase I Overview
 – Background
 – Project Objectives
 – Phase I Progress
 • Cycle Modeling
 • Chemical Kinetics
 • Preliminary Combustor Design
 • Bench-top Combustor Test

• Phase II Project Plan
Kinetic Model: Motivation

- The fundamental size of the combustor is governed by the timescale of chemical reactions.
- The chemical reaction kinetics determine how fast fuel oxidation occurs.
 - A detailed chemical kinetic model is required to size the combustor.
 - A reduced chemical kinetic model is required for detailed flow-field design in CFD.
Kinetics Knowledge Base

Well-Developed Mechanisms
P up to 20 bar
x_{CO_2} < 0.10 (mostly as product)

Pressure
Sparse data at high pressure, low CO$_2$

Current Application
P up to 200 bar
x_{CO_2} up to 0.96 (mostly as diluent)

CO$_2$ concentration
Knowledge front
Sparse data at low pressure, high CO$_2$

No data available at conditions relevant to this application.
Mechanism Selection

• Primary selection criterion is accurate prediction of the overall reaction time scales
 – Drives the combustor design
 – More important than other details such as peak concentration values

• USC-II is the clear choice based on this criterion
 – Most accurate in highest pressure flamespeed and autoignition validation comparisons

• USC-II also had good to adequate performance in low pressure CO$_2$ studies

• USC-II predictions should carry +/- 50% uncertainty in this application
Reduced Order Model

- For incorporation into a CFD model a reduced order model was developed
- Equations based on Arrhenius rate equation were tuned to match USC-II model predictions
 - Match autoignition delay
 - Match residual CO levels
 - Overall time to complete reaction
Outline

• Phase I Overview
 – Background
 – Project Objectives
 – Phase I Progress
 • Cycle Modeling
 • Chemical Kinetics
 • Preliminary Combustor Design
 • Bench-top Combustor Test

• Phase II Project Plan
Mixing vs. Kinetics Time Scales

- Time scale of reaction kinetics is much smaller than physical mixing time scales
- Combustion size and length governed by physical mixing
- Use of CFD with finite rate chemistry to model this
Initial Combustor Concept

- Multiple 90° O₂ injection jets
- Multiple 90° fuel injection jets
- Pressure vessel
- 950°C CO₂ inlet
- Solid liner
- Oxidizer premixing zone (jet-in-crossflow)
- Cold CO₂ – regenerative cooling
- Distributed reaction zone (stabilized by autoignition)

Fuel vs. oxidizer jet clocking

O₂ injection plane

Fuel injection plane

Centerline

SwRI

11/10/2016

2016 University Turbine Systems Research Workshop
CFD Model Setup

• ANSYS CFX 16.2
• Unstructured mesh
 – Boundary layer and injection region refinement
 – 4 million elements
 – Mesh sizes from 2 to 17 million elements for independence study
• Finite rate chemistry
 – Extrapolated reduced order equations
Temperature in 45° Clocked Case

Temperature Streamline 2

Temperature Contour 5

Ave Temperature (K)

Max Temperature (K)

Temperature (K)

Axial Distance (m)
Change Injection Spacing

- Injection oxygen and fuel need not be at the same location
- Auto-ignition allows even small concentrations of fuel+oxidizer to react
Final Design: Fuel Injection 24in Upstream

- Fuel well mixed throughout combustor before oxygen
- Allows hydrocarbon “cracking” before oxygen injection
- Cooler max temperatures
- Very good mixing at outlet
- Very low unburnt fuel percentage
Preliminary Mechanical Design

• Thermal design
 – Thermal containment using refractory insulating layer
 – Cooling CO₂

• Mechanical design
 – Utilizes stainless steel ANSI pipe and flanges
Outline

• Phase I Overview
 – Background
 – Project Objectives
 – Phase I Progress
 • Cycle Modeling
 • Chemical Kinetics
 • Preliminary Combustor Design
 • Bench-top Combustor Test

• Phase II Project Plan
Bench-top Combustor Test

• Small bench top test to study proof of concept, autoignition delay, and chemical kinetics
• Once through type system
 – 200 bar pressure
• Electric heaters used to set inlet temperature
• Jet in cross flow type fuel and oxidizer injection
Test Stand Loop Design
Oxy-fuel Test Reactor

- Machined from Haynes 230 bar stock
- Instrumentation standoff tubes welded to main combustor
- Two stage pre-heater to achieve 925°C combustor inlet
- Water jacketed gas sampling
Fuel and Oxygen Injector Design

- Precise sapphire orifice set into stainless steel mount
- Orifice constriction placed close to the combustor
- Mounted inside welded in place standoff
Combustor Test Stand
Test Stand Assembly

- Testing at Thar’s facility in Pittsburg, PA
- Outdoors with remote operation
Instrumentation

- Thermocouples in combustion zone
- Dynamic pressure transducers
- Three gas sampling ports
 - Optical emission spectroscopy (OES) to analysis chemical makeup
Optical emission spectroscopy (OES)

- Utilizes a plasma generator to identify chemical species
- Requires rapid thermal quenching of sample to halt chemical reactions
- SwRI has experience using OES for gas species analysis
Test Stand Operation

• Shake down tests
 – Observed auto-ignition combustion during shakedowns at full pressure and 80% temperature

• Component failures
 – Backpressure control valve
 – Mass flow controllers
 • Viton rubber does not mix with sCO2
Outline

• Phase I Overview
 – Background
 – Project Objectives
 – Phase I Progress
 • Cycle Modeling
 • Chemical Kinetics
 • Preliminary Combustor Design
 • Bench-top Combustor Test

• Phase II Project Plan
Phase II

• Complete detailed design
• Fabricate combustor and test loop
• Shake down and commission
• Test combustor
• Phase II duration: 3.5 years
• Partnered with Thar Energy, Georgia Tech, UCF and GE Global Research
Detailed Combustor Design

• Develop more detailed and accurate combustion kinetic mechanisms
• Utilize CFD to study combustion flow field
• Detailed thermal and mechanical design
• Final design for manufacturing
Combustor Integration with Sunshot Test Hardware
Combustor Integration

- Utilize existing Sunshot hardware
- Install oxy-fuel combustor
 - Demonstrate a direct fired oxy-combustor in a closed Brayton cycle
 - Evaluate combustor performance
 - Evaluate flue gas cleanup
 - Indirect heater allows for various combustor inlet conditions to be studied

Oxy-Combustor added downstream of indirect heater

Add flue gas cleanup and water separation
Planned Test Measurements

• Multiple OES sample locations
• Temperature measurements
• High speed pressure measurement for acoustic phenomena
• Study water dropout and separation
• Possible measurements
 – Optical access for advanced diagnostics
 – Materials sample testing
QUESTIONS?