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What is a sCO2 cycle?

• Closed Cycle
– Working fluid is CO2

• Cycle Type
– Vapor phase
– Transcritical
– Supercritical

• Supercritical CO2 has:
– High fluid density
– High heat capacity
– Low viscosity
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Why sCO2 Power Cycles?

• Offer +3 to +5 percentage 
points over supercritical 
steam for indirect coal 
fired applications

• High fluid densities lead 
to compact 
turbomachinery 

• Efficient cycles require 
significant recuperation
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Third Generation 300 MWe S-CO2 Layout from Gibba, Hejzlar, and Driscoll, MIT-GFR-037, 2006



Why Oxy-Fuel Combustion?
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Project Objectives

• Optimize the supercritical CO2 power cycle for 
direct fired oxy-combustion
– Target plant conversion efficiency is 52% (LHV)

• Technology gap assessment for direct fired 
plant configurations

• Develop a high inlet temperature oxy-
combustor suitable for the optimized cycle
– Target fuels are Natural Gas and Syngas 
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Cycle Analysis Results

• Recompression cycle has highest efficiency 
– 53.4% at 200 bar, 56.7% at 300 bar

• Condensation cycle 
– 51.6% at 200 bar, 54.0% at 300 bar
– Superior in all other metrics 
– Reduced recuperation (~ 50%)
– Lower combustor inlet temperature
– Higher power density (power output / flow rate)

• Both cycle configurations are compatible with an 
auto-ignition style combustor for 1200 C Turbine 
inlet temperatures. 
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Kinetic Model: Motivation

• The fundamental size of the combustor is 
governed by the timescale of chemical 
reactions

• The chemical reaction kinetics determine how 
fast fuel oxidation occurs
– A detailed chemical kinetic model is required to 

size the combustor 
– A reduced chemical kinetic model is required for 

detailed flow-field design in CFD 
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Kinetics Knowledge Base
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CO2 concentration

Pressure
Current Application

P up to 200 bar
xCO2 up to 0.96 (mostly as diluent)

Well-Developed Mechanisms
P up to 20 bar

xCO2 < 0.10 (mostly as product)
Sparse data at low pressure, high CO2

Sparse data at high pressure, low CO2

Knowledge front

No data available at conditions relevant to this application.



Mechanism Selection
• Primary selection criterion is accurate prediction of the 

overall reaction time scales
– Drives the combustor design
– More important than other details such as peak 

concentration values
• USC-II is the clear choice based on this criterion

– Most accurate in highest pressure flamespeed and 
autoignition validation comparisons

• USC-II also had good to adequate performance in low 
pressure CO2 studies

• USC-II predictions should carry +/- 50% uncertainty in 
this application
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Reduced Order Model

• For incorporation into a CFD model a reduced 
order model was developed

• Equations based on Arrhenius rate equation 
were tuned to match USC-II model predictions
– Match autoignition delay
– Match residual CO levels
– Overall time to complete reaction
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Mixing vs. Kinetics Time Scales

• Time scale of reaction 
kinetics is much smaller 
than physical mixing 
time scales

• Combustion size and 
length governed by 
physical mixing

• Use of CFD with finite 
rate chemistry to model 
this
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Initial Combustor Concept
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CFD Model Setup

• ANSYS CFX 16.2
• Unstructured mesh

– Boundary layer and injection 
region refinement

– 4 million elements
– Mesh sizes from 2 to 17 

million elements for 
independence study

• Finite rate chemistry
– Extrapolated reduced order 

equations
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Temperature in 45° Clocked Case
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Change Injection Spacing
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4 Hole 11.25°
Clocked

4 Hole 
Aligned

• Injection oxygen and fuel 
need not be at same 
location 

• Auto-ignition allows even 
small concentrations of 
fuel+oxidizer to react



Final Design: 
Fuel Injection 24in Upstream

• Fuel well mixed throughout combustor before oxygen
• Allows hydrocarbon “cracking” before oxygen injection
• Cooler max temperatures
• Very good mixing at outlet
• Very low unburnt fuel percentage
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Preliminary Mechanical Design

• Thermal design
– Thermal 

containment using 
refractory 
insulating layer

– Cooling CO2

• Mechanical design
– Utilizes stainless 

steel ANSI pipe 
and flanges
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Bench-top Combustor Test

• Small bench top test to study proof of 
concept, autoignition delay, and chemical 
kinetics

• Once through type system
– 200 bar pressure

• Electric heaters used to set inlet temperature
• Jet in cross flow type fuel and oxidizer 

injection
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Test Stand Loop Design
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Oxy-fuel Test Reactor

• Machined from Haynes 230 
bar stock

• Instrumentation standoff 
tubes welded to main 
combustor

• Two stage pre-heater to 
achieve 925°C combustor 
inlet 
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Fuel and Oxygen Injector Design

• Precise sapphire 
orifice set into 
stainless steel mount

• Orifice constriction 
placed close to the 
combustor

• Mounted inside 
welded in place 
standoff 
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Combustor Test Stand
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Test Stand Assembly

• Testing at Thar’s 
facility in Pittsburg, 
PA

• Outdoors with 
remote operation
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Instrumentation

• Thermocouples in 
combustion zone

• Dynamic pressure 
transducers

• Three gas sampling 
ports
– Optical emission 

spectroscopy (OES) 
to analysis chemical 
makeup
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OES
• Optical emission 

spectroscopy (OES)
• Utilizes a plasma 

generator to identify 
chemical species

• Requires rapid thermal 
quenching of sample to 
halt chemical reactions

• SwRI has experience 
using OES for gas 
species analysis
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Test Stand Operation

• Shake down tests
– Observed auto-ignition 

combustion during 
shakedowns at full pressure 
and 80% temperature

• Component failures
– Backpressure control valve
– Mass flow controllers

• Viton rubber does not mix 
with  sCO2

11/10/2016 2016 University Turbine Systems Research 
Workshop 33



Outline

• Phase I Overview
– Background
– Project Objectives
– Phase I Progress

• Cycle Modeling
• Chemical Kinetics
• Preliminary Combustor Design
• Bench-top Combustor Test

• Phase II Project Plan

11/3/2015 2015 University Turbine Systems Research 
Workshop 34



Phase II

• Complete detailed design
• Fabricate combustor and test loop
• Shake down and commission 
• Test combustor
• Phase II duration: 3.5 years
• Partnered with Thar Energy, Georgia Tech, UCF 

and GE Global Research
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Detailed Combustor Design

• Develop more detailed 
and accurate combustion 
kinetic mechanisms

• Utilize CFD to study 
combustion flow field

• Detailed thermal and 
mechanical design

• Final design for 
manufacturing
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Combustor Integration with
Sunshot Test Hardware
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Combustor Integration
• Utilize existing Sunshot

hardware
• Install oxy-fuel combustor

– Demonstrate a direct fired 
oxy-combustor in a closed 
Brayton cycle

– Evaluate combustor 
performance

– Evaluate flue gas cleanup
– Indirect heater allows for 

various combustor inlet 
conditions to be studied
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Planned Test Measurements

• Multiple OES sample locations
• Temperature measurements
• High speed pressure measurement for acoustic 

phenomena
• Study water dropout and separation
• Possible measurements

– Optical access for advanced diagnostics
– Materials sample testing
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QUESTIONS?
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