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Motivation

* Improvements in thermodynamic efficiency of power plants
needed

* Pressure gain combustion using detonations can significantly
improve efficiency

* Yet ..
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Motivation

Magnetefaydradynamic

PDE/RDE

Generator

Compressor Turbine

Electrical Power

Advantages of detonation-fed MHD: P o< o X V4 x B?
« High velocities (Ma > 2)

« High temperatures (T > 3000 K) increase electrical

conductivity
: CRE e
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Prior Research
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Prior research

o Litchford et al. (NASA) & Cambier et al. (Air Force): MHD
power extraction possible from propulsive PDE system
[3,10,11]

« Matsumoto et al. [12]: hydrogen-air PDE-powered MHD system
Major limitations:
- Primarily propulsive systems; significant insight still needed

into interactions between detonation and MHD field
- Coal and CH, significantly different than hydrogen _
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Use of Coal for Detonations

« Coal abundant resource in United States (and has funding)

* Prior (limited) research has considered detonations coupled
with MHD, primarily for gaseous fuels

* Most research investigating coal detonations has focused on
safety

* Physical and thermal properties of coal detonations need to
be measured to understand coupling with MHD

: Evea
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Technical Objectives

Overall Goal

Develop and evaluate a pulse detonation engine system which can be
coupled with a MHD system, and analyze MHD and detonation
performance.

Specific Objectives:
1) Design, build, and operate a pulse detonation engine that operates
on gaseous or solid fuels with oxygen as the oxidizer.

2) Evaluate the operational envelope and performance of the pulse
detonation device with both seeded and unseeded flows.

3)Develop and use a numerical design tool to calculate the
performance of pulse detonation and coupled detonation-MHD

systems.
: B
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Overview of Tasks

r |
[
ModelingI
| Enabling

Validation Valldatlon (EEmelgy it
improved
Modify Evaluate efficiency
LR Develbp coal/air combustor for operational /
Experimental |evaluate methane/ P —> —» %P
chmbustor oxy-coal performance of
oxygen PDE : )
operation engine
Year 1 Year 2 Year 2.5
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Remainder of Talk

1
2

Development of Pulse Detonation Engine (Task 2)

Knowledge Gained (Task 2)

4
)

Preliminary Calculations (Task 4)

)
)
3) Development of Coal Seeder (Task 3)
)
) Future Work
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Pulse Detonation System

Photodiodes Inlet Flange Predetonator
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Operation of the PDE

Y W /
’ o
) K g' i o N =~
AT

10




COLLEGE OF ENGINEERING Mechanical, Industrial & Manufacturing Engineering

Continuous Firing

11
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Achieving Consistent Velocities:
Purging

Without Purge
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Achieving Consistent Velocities:
Consistent DDT
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« Shchelkin spiral helpful in achieving consistent DDT
n e
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Achieving Consistent Velocities:
Temperature Effects

* Little sensitivity of detonation velocities to initial
temperatures

* Notable sensitivity of pulse detonator to initial temperature

IR Radiation Intensity [W/m?-sr]
0 m— w180
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min max
Chemiluminescence

Ombrello, Blunck, and Resor, Exp. In Fluids 2016
14
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Achieving Consistent Results
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Knowledge to be Gained using
Detonation Tube

1) Quantify sensitivity of detonation velocities to combustion

products
2) Provide boscimdary conditi [ parametric studyaf MHD-
detonation’system ---N 010

of coal or gasepus fuels on the detonation

électrlcal CQndu tivity, velocity)
. Walters Honors

Thesis, 2016

3) Identify the’ influen
charactéristics (e

B
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Flame Speed (S)) [
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Development of Coal Seeder

Coal Reservoir

To PDE

17




Governing Eq. for MHD/Detonation

Mass conservation eguation:

F) u: Gas Velocity p: Density p: Pressure
—U pdS = —j pu - ndl

ot JJg ]

B: Magnetic Flux Density J: Electric Current Density

Momentum conservation eguation: E: Total Energy o: Electrical Conductivity

%US PudS=—jl {pu(u-n)+pn}dl-IK-ndl+Usl><Bd5

Total energy conservation equation:

%HS pEdS=—Jl (pEu-n+pu-n)dl+jl M+US {%2+u-(]><3)}d5

Here, N o ) h: Specific Enthalpy
E =32 Ys(hoog + Jri_pogcCp dT") —p/p* |ul? Y;: Mass Concentration
Y;: Mass Production Rate

¢, Specific Heat at

Mass conservation eguation of Chemical Species:

d :
aﬂ pY.dS = _j pY.u - ndl + ﬂ pY.dS Constant Pressure
S l S

Charge Neutrality Equation  Ye _ z Yi

Me = Mion




COLLEGE OF ENGINEERING Mechanical, Industrial & Manufacturing Engineering

Governing Equations in Electrodynamics

Generalized Ohm’s Law Steady Maxwell Equations
. B . VXE=0
]—0(E+u><B)—ﬁ]><B V]=O

j: Electric Current Density E: Electric Field u: Gas Velocity B: Magnetic Flux Density

e’n,

NSp
me Zi=1 Vei

Electrical Conductivity o = e: Elementary Charge
n.: Electron Number Density

Hall Parameter g = __elBl m,: Electron Mass

me ;7 Vei n;: Species Number Density
Q.;: Electron Collision

Collision Frequency of _ Cross Section with
Vei = niQeiCe

Electron with Species Species
c.: Electron Mean Thermal

Sped

19 Ch
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Solving Compressible Flow Equations

Initially applied 2nd-order Van Leer vector flux splitting scheme

300000 [~ i 1-dimensional shock tube
i —— [+ 30 micro sec il prOblem

—F—— 31 micro sec

280000 |-

o

The oscillation existed at left wall
boundary

260000 -

3rd-order WENO-LF scheme then applied
: Gl
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Density Distribution using WENO-LF
Scheme
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Solving for Electric Field
Generalized Ohm’s Law Steady Maxwell Equations
j=a(E+u><B)—|%|j><B VxE=0 — E=-Vo

l V-j=0

Jj=f(E)
Jl _ v Known: o,u, B, 3
— E=-Ve Unknown: ¢
I=f(d)

2nd-order partial differential equation for ¢

ﬂ Discretized by Galerkin Finite Element Method

Simultaneous Linear Equations

Solved by GMRES Method _
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Test Case for Electric Field

Distribution of Electric Potential using Manufactured
Solution
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Test Case for Electric Field

Error in Solution for different nodes

10

<
(%))

log[Maximum error]
=)

10—? ] I | | T
5000 10000
log[The amount of nodes]




COLLEGE OF ENGINEERING Mechanical, Industrial & Manufacturing Engineering

Summary

1
2
3
4

Pulse detonation engine has been developed
Significant evaluation to improve repeatability
Prototype seeder developed

MHD solver developed for non-reacting compressible
flows

)
)
)
)
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\

b




Future Work

Experimental
1) Transition PDE to operate using oxy-coal

2) Measure boundary conditions and velocities for
calculations

3) Quantify changes in detonation characteristics
between solid and gaseous fuels

Computational
1) Couple MHD solver with detonation code
2) Develop detonation code

3) Parametric study of MHD performance for
detonations (long-term)
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CE/SE Method: 2D Detonation Example
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