UTSR Workshop

Film Cooling experiments at Near-Engine Conditions

Sridharan Ramesh, James Black, Doug Straub, Ed Robey 11/4/2016

Outline

- Objective
- Experimental facility
- Challenges
- Proposed methodology
- Role of CFD
- Future plans

Objective

- Evaluation of film cooling performance at near engine conditions
- Comparison of experimental measurements obtained at high temperature high pressure facility with those obtained at lab scale conditions

Low speed, Low temperature, Atm Pr, Low turbulent intensity, No swirl

Aero thermal facility

Moderate speed, High temperature, Pr >> Atm pr., Very high turbulent intensity, Moderate swirl

NETL's High Temperature and High Pressure Test Facility

Hot Gas Path Capabilities

- ~70 m/s @ Tu ~ 15-20%
- 1000-1200°C
- 1 10 bar

Coolant Gas Path Capabilities

- − Ambient \rightarrow ~ 300 °C
- − 0.5 \rightarrow 5 gm/sec
- No bypass flow

Measurements on Test Articles

Experimental Results - NETL

Issues

Coupon (center) effectiveness, $\varphi = \frac{T_m - (T_{wh})}{T_m - T_{c,internal}}$

Heat transfer , $q = k A \frac{T_{wh} - T_{wc}}{dx}$

Overall heat transfer coefficient, $q'' \neq H(T_m - T_{wh})$

 $H \ni \{ h_{convection}, h_{radiation} \}$

 η ?

Challenges

- Limited experimental measurements owing to high temperature (1450 K) and high pressure test facility condition (View factors, conduction losses, refractory temperature -> radiation)
- Lack of instrumentation and difficulties in obtaining velocity and temperature measurements of the flow field and surfaces

Heat Transfer Mechanism – Aero Thermal Test Rig

			 _	
ALL DUT OF	11 8	DEI		
	0.0.			
			- 1	
		- N 1		

	Heat Transfer modes	
	Convection	
	Location	Contribution
1.	Convection from hot gas to coupon	Major
2.	Convection through film cooling holes	Major
3.	Convection on coupon cold side exposed to coolant plenum	Major
1.	Convection on coupon sides and region exposed to airgap	Negligible
	Conduction	
5.	Conduction losses due to contact with retainer	Major
5.	Conduction losses due to contact with gasket	Major
	Radiation	
7.	Radiation from refractory to coupon hot side	Major
8.	Radiation from coupon hot side to viewport window	Major
Э.	Radiation from coupon hot side to viewport flange	Major
0.	Radiation from coupon cold side to plenum walls	Major
1.	Radiation from coupon holes to viewport window	Negligible
2.	Radiation from coupon holes to viewport flange	Negligible
3.	Radiation from coupon sides and regions exposed to airgap to retainer	Negligible

Experimental Methodology – Energy Balance

 $\sigma \varepsilon_s A_s F_{sw} (T_s^4 - T_w^4)$

 $\sigma \epsilon_s A_s F_{sf} (T_s^4 - T_f^4)$

 $\sigma \epsilon_s A_s F_{sp} (T_s^4 - T_p^4)$

Conve	ective heat load on coupon*
Region exposed to hot gas Film cooled region Lets assume c η Tf	(1-c) $h_0 A (T_g - T_s)$ c $h_f A (T_f - T_s)$ $h_0 = h_f$ portion of coupon affected by film cooling $(T_g - T_f)/(T_g - T_{c,exit})$ $T_g - \eta .(T_g - T_{ce})$
Final convected heat load due to hot gas	(1-c) h A (T _g - T _s) + c h A (T _g - η (T _g - T _{ce}) - T _s)
Convection in film cooling holes heat gained by coolant	m.C _p (T _{c,e} - T _{c,i})
Convection on cold side Coupon	CFD
Rad	iative heat load on coupon*
Radiative heat load entering coup incident radiation from refractory	to coupon $\sigma ε_r A_r F_{rs} (T_r^4 - T_s^4)$

Radiative heat load leaving coupon

coupon hot side to view port window
coupon hot side to view port flange
coupon cold side to coolant plenum walls

Conduction losses from coupon to holder assembly

coupon - gasket contact losses	CFD
coupon - retainer contact losses	CFD

Nomenclature

- A = Coupon surface area, m^2
- c = portion of coupon affected by film cooling
- C_p = Specific heat of coolant
- m = coolant mass flow rate
- h = Heat transfer coefficient, W/m-K
- T = Temperature, K
- F = View factor
- ϵ = Surface emissivity
- η = film cooling effectiveness
- σ = Stefan Boltzmann constant

Subscripts

c = coolant g = hot gas f = film p = plenum coolant r = refractory s = coupon surface (hot side) sc = coupon surface cold side v = viewport

Experimental Methodology

Coupon overall energy balance

Hot gas convection + Refractory radiation = Coupon radiation to plenum and viewport window + Coupon cold side cooling + Conduction losses coupon-holder assembly + Convection through film cooling holes

$$c.h_{f}A(T_{g} - \eta(T_{g} - T_{c,exit}) - T_{w}) + (1 - c)h_{0}A(T_{g} - T_{w})$$

$$= \sigma\varepsilon_{s}A_{s}F_{s \to v}(T_{s}^{4} - T_{v}^{4}) + \sigma\varepsilon_{s}A_{s}F_{s \to p}(T_{s}^{4} - T_{p}^{4}) + \dot{m}C_{p}(T_{c,exit} - T_{c,inlet}) + Q_{condn \ losses} + Q_{h, \ backside \ cooling} - \sigma\varepsilon_{s}AF_{s \to r}(T_{r}^{4} - T_{s}^{4})$$

Empirical correlations / CFD ?

From CFD	From Experiment	Assumptions
View factors: F _{sv} , F _{sp} , F _{sr}	Temperature: T _s , T _{c,exit} , T _{c,inlet}	$h_0 = h_f$
Temperature: T _r , T _{c,exit} HTC: h ₀	'n	
Conduction losses, q		
Backside cooling, q		

Experimental Methodology

$$c.h_{f}A(T_{g} - \eta(T_{g} - T_{c,exit}) - T_{w}) + (1 - c)h_{0}A(T_{g} - T_{w})$$

$$= \sigma\varepsilon_{s}A_{s}F_{s \to v}(T_{s}^{4} - T_{v}^{4}) + \sigma\varepsilon_{s}A_{s}F_{s \to p}(T_{s}^{4} - T_{p}^{4}) + \dot{m}C_{p}(T_{c,exit} - T_{c,inlet}) + \sum kA_{i}\frac{dT}{dx} + Q_{h, \ backside \ cooling} - \sigma\varepsilon_{s}AF_{s \to r}(T_{r}^{4} - T_{s}^{4})$$

Hole shapes: CY, AV, SHAV, SH BR: 0.5, 1 and 2.0

Run 1: T_{∞} = 1450 K, $T_{c,inlet}$ = 390 K Run 2: T_{∞} = 1400 K, $T_{c,inlet}$ = 376.55 K

$$h_{f}, \eta \text{ and } T_{c,exit} \longrightarrow \varphi = \frac{1-x}{1+Bi+hf/hi} + \eta . x, \qquad x = \frac{T_{\infty} - T_{c,exit}}{T_{\infty} - T_{c,inlet}}$$
Net heat flux reduction,
$$\frac{\Delta q''}{q_{0}''} = 1 - \frac{h_{f}}{h_{0}} \left(1 - \frac{\eta}{\varphi}\right)$$

Numerical Analysis

Objective: Obtain view factors, conduction losses, back side cooling heat transfer rate, refractory temperature

Challenges:

- Large size of the computational domain; Hole dia = 1/15'' while ۲ Hot gas path width = 5''
- Conjugate heat transfer model with radiation .

Cross sectional view – Aero thermal test rig

Mesh and Setup

U.S. DEPARTMENT OF

Hot-gas (in)	AOI (in)	Mesh size (million)
0.175	0.04	5
0.175	0.025	6.13
0.175	0.02	7.6
0.125	0.025	8.62

- Mesh Independent study: 5, 6.13, 7.6 and 8.62 million tetrahedral elements
- Inflational layers on solids: holder, gasket and retainer to refine mesh sizes near the boundary/interface
- Intended y+ ~ 1

Boundary Conditions

- Inlet: a) Velocity Axial, Radial and Tangential; b) Static Temperature and c) Turb. KE and ε are obtained from Combustor CFD case "aerothermal-with-combustor-only-rsm.cas" – NETL database
- Outlet: pressure set to zero
- Operating Pressure: 3 bar
- Surface emissivity: literature and other sources
- Turbulence model: SST KW; RKE EWT
- Species Transport : Methyl air mixture
- Radiation model: S2S; DO

Numerical Schemes:

P-V coupling: SIMPLE; Second order Upwind scheme for spatial discretization; Gradient – Green gauss node based Pressure - Standard

12

Effect of turbulence model

Model	Conduction losses (W)	Difference (K)
SST k-ω	223	-
Realizable k-ɛ	233	10

Though the differences are quite small, SST k- ω model is preferred over Realizable k- ϵ owing to the accurate film cooling predictions at higher blowing ratios¹

Summary/Literature/Documentation:

SST k-ω:

- Integrated to wall; resolves BL; predicts separation accurately;
- most widely used in film cooling studies and heat transfer studies
- Improved model compared to k-ω; blending function to switch k-ω near to k-ε towards mainstream;
- Modified eddy viscosity accounts for transport of turbulent stress; S: invariant measure of strain rate; F₂: blending function

$$\nu_T = \frac{a_1 k}{\max(a_1 \omega, SF_2)}$$

Realizable k- ϵ and RNG k- ϵ :

- Works wells in cases of separated flow, streamline curvature, vortices unlike standard k-ε model
- Variable C_u accounts for realizability in case of Realizable k- ϵ
- Enhanced Wall Treatment (EWT) behaves like two layer zonal method when with y⁺ ~1; more accurate
- Scalable Wall Functions (ScWF) behave similar to standard wall functions but

Usage of curvature correction to account for the incoming swirl from the combustor exhaust gas: modify production term with an empirical function

Effect of radiation model

Coupon Surface Location

Heat transfer load on coupon

Summary on Radiation models

Assumptions/simplifications:

- Combustor exhaust gases are modeled using Species Transport.
- Hot gas is assumed not to behave as a participating media.
- Radiation exchange is only between surfaces. Grey diffuse radiation.

Surface to Surface model:

• find view factors from each participating surface;

$$F_{12} = \frac{\iint \cos\beta_1 \cdot \cos\beta_2 / \pi r^2}{4}$$

- all surfaces are treated opaque; converges relatively faster
- Does not support mesh adaption or hanging nodes

Discrete Ordinates method

- Solve radiation transport equation for a finite number of discrete solid angles
- Allows walls be to treated as Semi-transparent surfaces

Location	difference: S2S and DO (W)	% difference
Coupon hot side surface	24	-6.4

Model assumptions

• Simplified Rig:

U.S. DEPARTMENT OF

- Refractory: Simplified using shell wall conduction
- **Retainer Cooling:** Water used to maintain retainer temperature has been simplified using a constant Temp BC = 300 K. Change in water temperature in actual aero thermal rig ~ 1 K.
- ~5 million tetrahedral elements

- Actual Aero Thermal Rig:
 - **Refractory:** included in the model
 - Retainer cooling: water domain included in the model
 - ~9 million tetrahedral element converted to ~5 million polyhedral elements

Simplified vs. Actual AT Rig

- Difference in hot gas peak temperature is: 13 K, 0.86 %,
- Film temperature distribution shows agreeable match but difference in lowest temperature is ~ 40 K, 7.8%

Simplified vs. Actual AT Rig

Location	Area Avg. Temperature diff (K)	% difference (increase)
Retainer hot side	100	22
Coupon hot side	21	2.55
Holes	30	3.8
Refractory	-14	-1
Viewport window	36	2.9
Location	Total heat transfer rate Difference (W)	% difference (increase)
▲ Coupon – Retainer Contact	50	26.3
Coupon – Gasket Contact	-6	-20.6
Coupon hot side	62	15.6
Assur	nption	Validity
Refractory walls replaced with shell conduction		\checkmark
Retainer cooling water domain replaced with fixed temperature boundary condition		×

17

U.S. DEPARTMENT OF

Temperature data at various locations

U.S. DEPARTMENT OF

- CFD matches with experiment only at very high blowing ratios: BR 3.0
- Effect of blowing ratio on overall effectiveness was not observed in the CFD data: Possible reasons
 - Experimentally measured turbulence intensity was roughly ~ 15% (high uncertainty).
 - Film cooling performance at low blowing ratios decreases with increases in mainstream TI
 - Thermocouple radiation correction might explain some differences in Temp. in the coolant plenum

On going plans:

- Cold flow validation cases with RANS model to understand the deficiencies
- Validation for blank coupon with hole film cooling holes

21

Thank you

QUESTIONS?

Backup slides

Temperature data at various locations

