THE UNIVERSITY OF ALABAMA AT BIRMINGHAM

Knowledge that will change your world

CONTINUOUS WATER QUALITY SENSING FOR FLUE GAS DESULFURIZATION WASTEWATER

Dr. Lee Moradi Director of UAB EITD

Project Team - Overview

<u>Prime</u>

Multidisciplinary Team of University Professors, Staff Members, and Students

<u>Subawardee</u> University Affiliated Research Institution

In-Kind Cost Share Industry Partner

Project Team – Expertise UAB EITD

Complex System Design and Integration for Extreme Environments

- Consistently delivered on well over \$60M of NASA contracts over past 8-10 years
 - Sole Supplier of Powered Cold Stowage Units for NASA ISS transport operations
 - POLAR (+4C to -95C)
 - GLACIER (+4C to -160C)
 - MERLIN (+48.5C to -20C)

ENGINEERING AND INNOVATIVE TECHNICAL DEVELOPMENT GROUP

Project Team – Expertise UAB EITD

- Diverse Array of Services Offered
 - o Rapid Prototyping
 - Electrical, Mechanical, Software, & System
 Engineering
- AS9100, ISO9001 Certification
 - 4,500 ft² of Production Labs
 - o 13 ESD workstations
 - NASA electronics process standards
 - □ Soldering (J-STD-001ES)
 - Assembly (NASA-STD-8739.1)
 - Harness (NASA-STD-8739.4)

Biosensor for anthrax detection

ETD ENGINEERING AND INNOVATIVE TECHNICAL DEVELOPMENT GROUP

Project Team – Expertise *Metrohm*

A Leading Manufacturer of High Precision Instruments for Chemical Analysis

- Swiss based parent company
- Extensive Application Knowledgebase
 - o Application Notes
 - Highly Educated & Experienced Support Staff
- Electrochemistry Instruments
 - o Benchtop 884 VA Voltammetry Unit
 - o On-Line ADI2045 VA Process Analyzer

Unique Resources

Water Research Center (WRC)

- Opened in 2012 by Georgia Power & Electric Power Research Institute (EPRI)
 - Operated by Southern Research
- Located on-site at Georgia Power's Plant Bowen
 - 9th Largest U.S. Power Plant in Net Generation
 (3.38 MW)
- 7 Focus Areas to include:
 - Low Volume Wastewater Treatment
 - Moisture Recovery

- Zero Liquid Discharge
- Water Modeling, Monitoring, & Best Management Practices

Problem Statement - Overview

Key waste streams from updated USEPA guidelines.

Proposed Effluent Guidelines for the Steam Electric Power Generating Category. 2015; Available from: http://water.epa.gov/scitech/wastetech/guide/steam-electric/proposed.cfm.

Problem Statement – EPA Requirements

Steam Electric Power Generation Effluent Guidelines for Coal-fired Power Plant Wastewater

WASTE STREAM	PARAMETER	DAILY MAXIMUM	30-DAY AVERAGE
FGD WASTEWATER FOR DISCHARGE	As (µg/L)	11	8
	Se (µg/L)	23	12
	Hg (ng/L)	788	356
	NO ³ /NO ² as N (mg/L)	17	4.4
FGD WASTEWATER UNDER VOLUNTARY INCENTIVE	As (µg/L)¹	4	
	Se (µg/L)	5	
	Hg (ng/L) ¹	39	24
	TDS (mg/L)	50	24

Proposed Effluent Guidelines for the Steam Electric Power Generating Category. 2015; Available from: http://water.epa.gov/scitech/wastetech/guide/steam-electric/proposed.cfm.

Problem Statement

Measuring Selenium Concentrations

Possible formations of Selenium in FGD Wastewater

- Selenate
 - o p M²⁺ + q H⁺ + r SeO₄^{2−} \rightleftharpoons [M_pH_q(SeO₄)_r]^{(2p+q-2r)+}

• Selenite

o p M²⁺ + q H⁺ + r SeO₃^{2−} \rightleftharpoons [M_pH_q(SeO₃)_r]^{(2p+q-2r)+}

Where:

- M = Mg, Ca, Sr, Mn, Cu, Zn, Cd, etc.
- H = Protonation of selenium species

Torres et al., "Selenium Chemical Speciation in Natural Waters."

Proposed Solution

Novel Sample Preparation Methodology

- Sample Prep to facilitate detection with COTS devices
- Methodology details are considered proprietary
- 3 Stages
 - o UV-Peroxide Digester
 - Matrix Manipulation (removal & polishing)
 - o Reduction

Proposed Solution

Concentration Measurements

884 VA Voltammetry Unit

- Low Limit of Detection:
 Se: 300ppt
 As, Hg: 100ppt
- Replaceable Measuring Head:
 - Multi-Mode Electrode Pro
 Hanging Mercury Drop (Se)
 - scTRACE Gold Electrode
 Solid State (As, Hg)
- Relatively portable, with low maintenance and operating costs (vs. ICP-MS)

Significance of Results

- Enable closed loop control of contaminant concentrations in effluent discharge
- Provide superior data for 30-day averaging compliance
 - o Easier to prove compliance
 - o Better for the environment
- Significantly reduce operating costs of coal fired power plants with wet FGD systems
 - Replace periodic grab sample analysis by off-site laboratories
 - Minimize required FGD wastewater treatment reagents and equipment

Relevance to Fossil Energy

- No longer blindly discharging contaminants into the environment!
- Global Impact
 - ~1/3rd of US Coal Fired Power Plants have wet FGD systems
 - By comparison, China exceeds this number by 3-5 times
- Adoption of continuous monitoring has many attractive benefits

Statement of Project Objectives

Key Features

Continuous Water Quality Monitor for FGD Wastewater

- Concentrations of Trace Metals
 - o 1st Priority: Se
 - 2nd Priority: As, Hg
- Reliable, Automated In-Field Operation
 - Goal for Prototype: 1 week of intervention-free operation
- High Measurement Frequency (<1hr latency)

Statement of Project Objectives

Multi-Phase Approach

I. Development of Batch Process for Sample Preparation

II. Design and Development of Continuous Sample Preparation Prototype

III. Demonstration Unit Integration and Field Testing

Project Milestones & Schedule

- Period of Performance: 18 mths (Aug '16 Jan '18)

 ◦ ≈ 6mths / Phase
- Milestone Distribution Basis (10 total):
 - Validation of Critical Sample Preparation Steps including:
 - UV-Peroxide Digester
 - Matrix Manipulation (removal & polishing)
 - Reduction
 - Validation of Critical "" Steps throughout:
 - Batch Process Development
 - Continuous Prototype Development
 - Demonstration Unit Integration

Budget

Total Budget: \$439, 986

- Labor: 24.4%
- Equipment & Supplies: 12.7%
- Contractual: 44.2%
 - In-Kind Cost Share from Metrohm: 9%
 - Sub-Award to Southern Research: 35.2%
 - Labor: 40.3% (of sub-award)
 - □ Supplies: 2.7% (of sub-award)
- Indirect: 17.1%

Risk Management

(Probability, Impact)

- Technical Risk: (Moderate, High) Failure of primary sample preparation methodology to produce desired results.
- Mitigation: Two contingency methodologies identified before proposal submission.
- Organizational Risk: (Moderate, Moderate) Labor overruns due to difficulty in identifying sample preparation process.
- Mitigation: Minimize labor costs by leveraging team expertise:
 - o UAB to leverage Metrohm expertise in hardware design
 - SR WRC to leverage in-house experience evaluating other attempts to monitor and treat FGD wastewater

Project Status

- Phase I development is underway
 - o UV-Peroxide Digester design ongoing
 - Custom design to allow for re-use of key components for continuous prototype.
 - o UV-Peroxide Digester Procedure Document Complete
- Less than 1mth behind schedule
 - Slow award acceptance and sub-award distribution timeline
 - Work around: At-risk accounts at UAB & SR
 - o Personnel time conflicts
 - Mitigation: Completion of other projects imminent
 - o UV-Peroxide Digester Component Re-usability requirement
 - Awaiting Metrohm Design Input based on Process Analyzer design

Questions?

