CONTINUOUS WATER QUALITY SENSING FOR FLUE GAS DESULFURIZATION WASTEWATER

Dr. Lee Moradi
Director of UAB EITD
Project Team - Overview

Prime
Multidisciplinary Team of University Professors, Staff Members, and Students

Subawardee
University Affiliated Research Institution

In-Kind Cost Share
Industry Partner
Project Team – Expertise

UAB EITD

Complex System Design and Integration for Extreme Environments

• Consistently delivered on well over $60M of NASA contracts over past 8-10 years
 ○ Sole Supplier of Powered Cold Stowage Units for NASA ISS transport operations
 ○ POLAR (+4C to -95C)
 ○ GLACIER (+4C to -160C)
 ○ MERLIN (+48.5C to -20C)
Project Team – Expertise

UAB EITD

- Diverse Array of Services Offered
 - Rapid Prototyping
 - Electrical, Mechanical, Software, & System Engineering

- AS9100, ISO9001 Certification
 - 4,500 ft² of Production Labs
 - 13 ESD workstations
 - NASA electronics process standards
 - Soldering (J-STD-001ES)
 - Assembly (NASA-STD-8739.1)
 - Harness (NASA-STD-8739.4)

Biosensor for anthrax detection
Project Team – Expertise

Metrohm

A Leading Manufacturer of High Precision Instruments for Chemical Analysis

• Swiss based parent company

• Extensive Application Knowledgebase
 o Application Notes
 o Highly Educated & Experienced Support Staff

• Electrochemistry Instruments
 o Benchtop 884 VA Voltammetry Unit
 o On-Line ADI2045 VA Process Analyzer
Unique Resources

Water Research Center (WRC)

- Opened in 2012 by Georgia Power & Electric Power Research Institute (EPRI)
 - Operated by Southern Research

- Located on-site at Georgia Power’s Plant Bowen
 - 9th Largest U.S. Power Plant in Net Generation (3.38 MW)

- 7 Focus Areas to include:
 - Low Volume Wastewater Treatment
 - Moisture Recovery
 - Zero Liquid Discharge
 - Water Modeling, Monitoring, & Best Management Practices
Problem Statement - **Overview**

Key waste streams from updated USEPA guidelines.

Problem Statement – *EPA Requirements*

Steam Electric Power Generation Effluent Guidelines for Coal-fired Power Plant Wastewater

<table>
<thead>
<tr>
<th>Waste Stream</th>
<th>Parameter</th>
<th>Daily Maximum</th>
<th>30-Day Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>FGD Wastewater for Discharge</td>
<td>As (μg/L)</td>
<td>11</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Se (μg/L)</td>
<td>23</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Hg (ng/L)</td>
<td>788</td>
<td>356</td>
</tr>
<tr>
<td></td>
<td>NO₃/NO₂ as N (mg/L)</td>
<td>17</td>
<td>4.4</td>
</tr>
<tr>
<td>FGD Wastewater under Voluntary Incentive</td>
<td>As (μg/L)</td>
<td>4</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>Se (μg/L)</td>
<td>5</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>Hg (ng/L)</td>
<td>39</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>TDS (mg/L)</td>
<td>50</td>
<td>24</td>
</tr>
</tbody>
</table>

Problem Statement

Measuring Selenium Concentrations

Possible formations of Selenium in FGD Wastewater

- **Selenate**
 - $p\ M^{2+} + q\ H^+ + r\ \text{SeO}_4^{2-} \rightleftharpoons [M_pH_q(\text{SeO}_4)_r]^{(2p+q-2r)+}$

- **Selenite**
 - $p\ M^{2+} + q\ H^+ + r\ \text{SeO}_3^{2-} \rightleftharpoons [M_pH_q(\text{SeO}_3)_r]^{(2p+q-2r)+}$

Where:
- $M = \text{Mg, Ca, Sr, Mn, Cu, Zn, Cd}$, etc.
- H = Protonation of selenium species

Torres et al., “Selenium Chemical Speciation in Natural Waters.”
Proposed Solution

Novel Sample Preparation Methodology

- Sample Prep to facilitate detection with COTS devices

- Methodology details are considered proprietary

- 3 Stages
 - UV-Peroxide Digester
 - Matrix Manipulation (removal & polishing)
 - Reduction
Proposed Solution

Concentration Measurements

884 VA Voltammetry Unit

- Low Limit of Detection:
 - Se: 300ppt
 - As, Hg: 100ppt

- Replaceable Measuring Head:
 - Multi-Mode Electrode Pro
 - Hanging Mercury Drop (Se)
 - scTRACE Gold Electrode
 - Solid State (As, Hg)

- Relatively portable, with low maintenance and operating costs (vs. ICP-MS)
Significance of Results

• Enable closed loop control of contaminant concentrations in effluent discharge

• Provide superior data for 30-day averaging compliance
 o Easier to prove compliance
 o Better for the environment

• Significantly reduce operating costs of coal fired power plants with wet FGD systems
 o Replace periodic grab sample analysis by off-site laboratories
 o Minimize required FGD wastewater treatment reagents and equipment
Relevance to Fossil Energy

• No longer blindly discharging contaminants into the environment!

• Global Impact
 • ~1/3rd of US Coal Fired Power Plants have wet FGD systems
 • By comparison, China exceeds this number by 3-5 times

• Adoption of continuous monitoring has many attractive benefits
Statement of Project Objectives

Key Features

Continuous Water Quality Monitor for FGD Wastewater

- Concentrations of Trace Metals
 - 1st Priority: Se
 - 2nd Priority: As, Hg

- Reliable, Automated In-Field Operation
 - Goal for Prototype: 1 week of intervention-free operation

- High Measurement Frequency (<1hr latency)
Statement of Project Objectives

Multi-Phase Approach

I. Development of Batch Process for Sample Preparation

II. Design and Development of Continuous Sample Preparation Prototype

III. Demonstration Unit Integration and Field Testing
Project Milestones & Schedule

• Period of Performance: 18 mths (Aug ’16 – Jan ‘18)
 - ≈ 6mths / Phase

• Milestone Distribution Basis (10 total):
 - Validation of Critical Sample Preparation Steps including:
 - UV-Peroxide Digester
 - Matrix Manipulation (removal & polishing)
 - Reduction
 - Validation of Critical “” Steps throughout:
 - Batch Process Development
 - Continuous Prototype Development
 - Demonstration Unit Integration
Budget

Total Budget: $439,986

- Labor: 24.4%

- Equipment & Supplies: 12.7%

- Contractual: 44.2%
 - In-Kind Cost Share from Metrohm: 9%
 - Sub-Award to Southern Research: 35.2%
 - Labor: 40.3% (of sub-award)
 - Supplies: 2.7% (of sub-award)

- Indirect: 17.1%
Risk Management
(Probability, Impact)

• Technical Risk: (Moderate, High) Failure of primary sample preparation methodology to produce desired results.
 • Mitigation: Two contingency methodologies identified before proposal submission.

• Organizational Risk: (Moderate, Moderate) Labor overruns due to difficulty in identifying sample preparation process.
 • Mitigation: Minimize labor costs by leveraging team expertise:
 o UAB to leverage Metrohm expertise in hardware design
 o SR WRC to leverage in-house experience evaluating other attempts to monitor and treat FGD wastewater
Project Status

• Phase I development is underway
 o UV-Peroxide Digester design ongoing
 ⬤ Custom design to allow for re-use of key components for continuous prototype.
 o UV-Peroxide Digester Procedure Document Complete

• Less than 1mth behind schedule
 o Slow award acceptance and sub-award distribution timeline
 ⬤ Work around: At-risk accounts at UAB & SR
 o Personnel time conflicts
 ⬤ Mitigation: Completion of other projects imminent
 o UV-Peroxide Digester Component Re-usability requirement
 ⬤ Awaiting Metrohm Design Input based on Process Analyzer design
Questions?