Phase field modeling of microstructure and conductivity evolution in SOFC electrodes

Yinkai Lei, Tianle Cheng and Youhai Wen – National Energy Technology Laboratory, U.S. Department of Energy

Introduction

Purpose of this research:
• Simulate microstructure evolution and coarsening in SOFC electrodes;
• Predict property evolution associated with electrode coarsening.

Phase field model of SOFC electrodes:
• Capable of simulating long term microstructure evolution [1].
• Properties of electrode can be extracted directly from simulated microstructures.
• Need wide range of tunability with respect to various interfacial energies in the electrodes.

Phase field modeling
• Phase-field parameters:
 ➢ Phase fraction C_i (conserved)
 ➢ Order parameter η_j (non-conserved)
• Free energy
 \[F = \int \left(f_{bulk}(C_i, \eta_j) + \sum_{i,k} \frac{K_{ij}}{2} \left(\nabla \eta_k \right)^2 + \frac{\sum_{i,j} K_{ij}}{2} \left(\nabla C_i \cdot \nabla C_j \right) \right) d^3r \]
 • Bulk free energy density \(f_{bulk} \) keeps \(C_i, \eta_j \) around (0,0) or (1,1).
 • Crossing terms of parameter graditens improves the tunability of interfacial energies.
• Evolution of \(C_i \) (representing electrolyte and electrode phases): Cahn-Hilliard equation.
 \[\frac{\partial C_i}{\partial t} = \nabla \cdot \left[M_i \nabla \left(\frac{\delta F}{\delta C_i} \right) \right] \]
• Evolution of \(\eta_j \) (representing different polycrystalline grains): Allen-Cahn equation
 \[\frac{\partial \eta_j}{\partial t} = -M_j \frac{\delta F}{\delta \eta_j} \]

Microstructure evolutions
• 3D model, 128 × 128 × 128 points.
• Three compositions:
 ➢ 30%YSZ-40%Ni/LSM-30%Pore,
 ➢ 35%YSZ-35%Ni/LSM-30%Pore,
 ➢ 40%YSZ-30%Ni/LSM-30%Pore.
• Initial structure: ~2000 grains.

Grain size
• Ni/LSM coarsened faster than YSZ.
• Coarsening rate depends on the volume fraction of each phase.

Triple phase boundary
• The degradation of TPB in anode is the fastest one.
• The degradation of TPB is insensitive to grain boundary energy.

References

Conductivity calculations
Solving Poisson’s equation
\[\mathbf{V} \cdot (\sigma(\mathbf{F})\mathbf{E}) = -\frac{\partial \rho}{\partial t} = 0 \]
using Bound Charge Successive Approximation algorithm [4].

Conductivity evolution

Correlation between conductivity and geometric properties

Conclusions
• The new phase-field model can simulate microstructure evolution in real SOFC electrodes and extracting the “real-time” effective conductivity during coarsening.
• Coarsening rate and TPB density depend on the electrode composition and ratio of interfacial energies.

Acknowledgement:
The authors would like to thank Drs. Kirk Gerdes, Gregory Hackett, Harry Abernathy, Long-Qing Chen, Paul Salvador, William Epling and Tom Kalapos for valuable technical discussions. This project was supported in part by an appointment to the Internship/Research Participation Program at the National Energy Technology Laboratory, U.S. Department of Energy, administered by the Oak Ridge Institute for Science and Education.