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Motivation

Cation diffusion can directly or indirectly influence degradation of LSM/YSZ
. Diffusion of cations from the interfaces to surfaces under current load.
. May increase the number of TPB and improve the performance in a short time
. Leads to increase of the interface resistance in the long-term operation due to
morphological and compositional evolution near the LSM/YSZ interfaces

_ Annealing at 1273 K for 300 h
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The interface degradation
was identified as:

1. loss of LSM coverage
2. loss of three-phase-
boundary (TPB) length.
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Diffusion Model (Random Walk Diffusion)
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¢ Point defect equilibrium model

* Defect interactions for defect clusters

Migration barriers of the
cation diffusion pathways
obtained from DFT NEB

calculations
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Concentration of defect complexes involved in

20 10 0 cation diffusion in LSM is calculated based on the
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B-site Cation Diffusion Pathways

4 Mn diffusion pathways

Pathway 1 (V,-Vj)
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Cation Self-diffusion Coefficients vs. T and P (O,)

Set AS yigration = 4-5k, and attempt frequency v, = 10*2 Hz
* Tdependence at P(0,)=0.2 atm

Exp. data (e) and the B/W figure from Miyoshi PCCP 2009 . .
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Pathway 2 (Curved V)
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12. Fe in LaFeQ, [22)
13. Coin LaCaO, [23]
14. Srin BaTi0, [24]
15. Zrin BaTiO, (24
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Pathway. 4 (V,-V,) Summary

Developed an ab initio-based cation diffusion model to quantitatively predict cation

self-diffusion coefficients of La, ,Sr,MnO,,; vs. a wide range of T and P(O,)

*  Good agreement with experimental LaMnO,,5 Dy, T and P(0,) dependences

Results support the Mng-V,-V; model as the dominant Mn diffusion pathway at high P(O,)

Predict to have a crossover of Dy,,"(V,-Vg) Vs. Dy, "(Vg-Vo]) at intermediate/low PO,

LaMnO; Dy,,," [V4-Vg is 23 orders magnitude greater than Lag ,5Sr, ,sMnO; due to higher cation vacancy conc.
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A-site Cation Diffusion Pathways

T g *
N A o N ‘S ':" * Predicted apparent activation energies ( AE,’s) at P(O,) = 0.2 bar
Reaction Coord. ' » Dy,* :1.5eVin LaMnO;,; ; between the reported exp. values 0.6 eV (Radio-isotope diffusion)
» D,":2.5eVinLaMn0,,; vs. exp. Pr impurity diffusion in 1.3£0.1 eV (Palcut PCCP 2008)

> AE, of Dy, * vs. Sr doping: 1.5 eV in LaMnO,; vs. 2.2 eV in Lag 557, ,sMn0O,

Future Work
« Extend to model cation interdiffusion of LSM/YSZ interface * Impurity diffusion (Y, Zr, Pr, Co, etc. ) in LSM
Direct 15t NN A-site vacancy migration * The formalism can be applied to other SOFC perovskite systems (e.g. LSCF, LSC, BSCF)
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Calculated DFT migration barrier for La in
LaMnO;,5: 2.8 eV
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