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Abstract

GE Global Research, in partnership with SUNY 
Polytechnic Institute and GE–Fuel Cells LLC, proposed an 
18-month program to develop and perform initial field 
validation tests of highly stable and gas-selective 
sensors for in situ monitoring of gases produced with on-
site steam reforming in solid  oxide fuel cell (SOFC) 
systems. The knowledge from this sensor will allow 
accurate SOFC control and will deliver a lower operating 
cost for SOFC customers.  
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The program objective is to achieve the highly desired selectivity and stability of 

sensing of gases for SOFC application by implementing a new generation of gas 

sensors, known as multivariable sensors [1-6]. This program will culminate with 

field validation of developed sensors on GE SOFC systems. 

In Phase 1, we will develop sensing materials, perform lab tests for sensitivity and 

stability, downselect sensor designs, and perform field validation of developed 

sensors on a SOFC system at GE–Fuel Cells. 

Phase 1 will advance fundamental understanding of multivariable gas sensing at 

high temperatures and will enable cost-effective and stable sensors for SOFC 

applications. In situ data generated by the sensors will allow development of 

recommendations for Phase 2 deliverables. 
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Requirements flow-down from 

optical system design to multi-

gas sensing, fabrication of 

sensors, lab tests for selectivity 

with gas mixtures, stability 

tests, sensors downselection, 

field validation

Fabrication of 

sensors, lab tests for 

sensitivity with 

individual gases, 

characterization of 

sensing films

Field validation 

assistance, sensor 

benchmarking, 

recommendations for 

Phase 2 plan and 

deliverables

The team
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Examples of available offerings and the proposed sensor
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Anatomy of conventional gas sensors

Appropriate pairing of  transducer + sensing material
is the key for meeting detection requirements
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Acoustic Mechanical

Polymers
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Selectivity challenges in major types of sensors 
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Electrochemical Metal oxide Catalytic

Non-selective response to different gases is 

a significant accuracy limitation of conventional sensors

Origin: conflicting requirements for sensor selectivity vs. reversibility
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Accuracy demands in gas sensors

Response to specific analyte gas (desired), other interference gases (not desired)
Sensor example

Non-selective response to different gases is 

a significant accuracy limitation of conventional sensors

Origin: conflicting requirements for sensor selectivity vs. reversibility
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Sensor arrays as accepted compromise
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High dispersion of sensor response improves selectivity (= accuracy)
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Individual multivariable sensors:

• Several independent responses from individual sensor

• Disruptively overcome insufficient selectivity of existing sensors
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Breaking status quo: multivariable gas sensors

1

Selectivity:       

~2,000,000-fold rejection of chemical interferences

outperformed gas sensor arrays in side-by-side tests 

Sensitivity:
part-per-million, part-per-billion, part-per-trillion
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Bio-inspired gas sensors
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Potyrailo et al. Nature Comm. 2015

Design rules for 

gas-selectivity control: 

•Spatial orientation of surface 

functionalization

•Chemistry of surface functionalization

•Extinction and scattering of 

nanostructure
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Gas mixture
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Proof-of concept:  Potyrailo et al. Nature Comm. 2015
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Optical fiber
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with ñ = n + n*

Time (min)

0

80

S
e

n
s
o

r 
re

s
p

o
n

s
e

S
e

n
s
o

r 
re

s
p

o
n

s
e

60

0

Time (min)

N2

H2

N2

H2

N2

H2

N2

H2

N2

N2

CO CO CO

N2
N2

Time (h) 2000

W
a

v
e

le
n

g
th

 (
m

m
)

1.3

1.7Gas mixture

Proposed multivariable optical grating-based sensor

Proof-of concept:  Wu, J., Distributed Fiber Optic Gas Sensing for Harsh Environment, Final Report, Department of Energy, NETL, Award DE-FC26-05NT42438 2008, 

http://www.osti.gov/scitech/servlets/purl/938805
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Example of proposed sensing structures and materials 

for multivariable optical sensors

Proof-of-concept: 

Carpenter et al. Anal. Chem. 2012, 84, 5025-5034.
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Does 
sensor 

meet specs
1 - 2?

Engineering of multivariable
optical transducer

Sensing material 
composition

Deposition of sensing 
material onto transducer

Sensor tests
in dry conditions

Sensor tests
in humid conditions

Optimized 
sensor selectivity

Does 
sensor 

meet specs
3 - 4?

Sensor specifications:
1. Measurement dynamic range for 

individual gases in dry conditions 

2. Discrimination between different 
gases in dry conditions 

3. Measurement dynamic range for 
individual gases in humid 
conditions

4. Discrimination between different 
gases in humid  conditions

Selectivity optimization of multivariable optical gas sensors
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Focus
on material / system 

parameters, likely 

affecting stability 

Characterize / 

quantify 
changes in 

material / system
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transfer functions 
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Improvement of material and system stability 

using a four-step Six Sigma process
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2016 2020 2025

Improved
stability

Selective sensors
via multivariable 
principles

Fusion of 
gas and physical 

sensors

Gas application-specific 
integrated circuits 

(electronic/photonic)

Extreme conditions:
humidity, temperature
chemical background

Patterns detection
(e.g. breath, odors)

Reliability

0.5 - 10 0.001 – 0.1
Cost 

($)

1 - 1000 0.000001 – 0.1
Power
(mW)

Conventional 
sensor  arrays

Non-selective 
conventional
sensors

Consumer 
electronics with 
integrated gas 

sensors

Wearable gas 
sensors

2025 roadmap for gas sensors
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