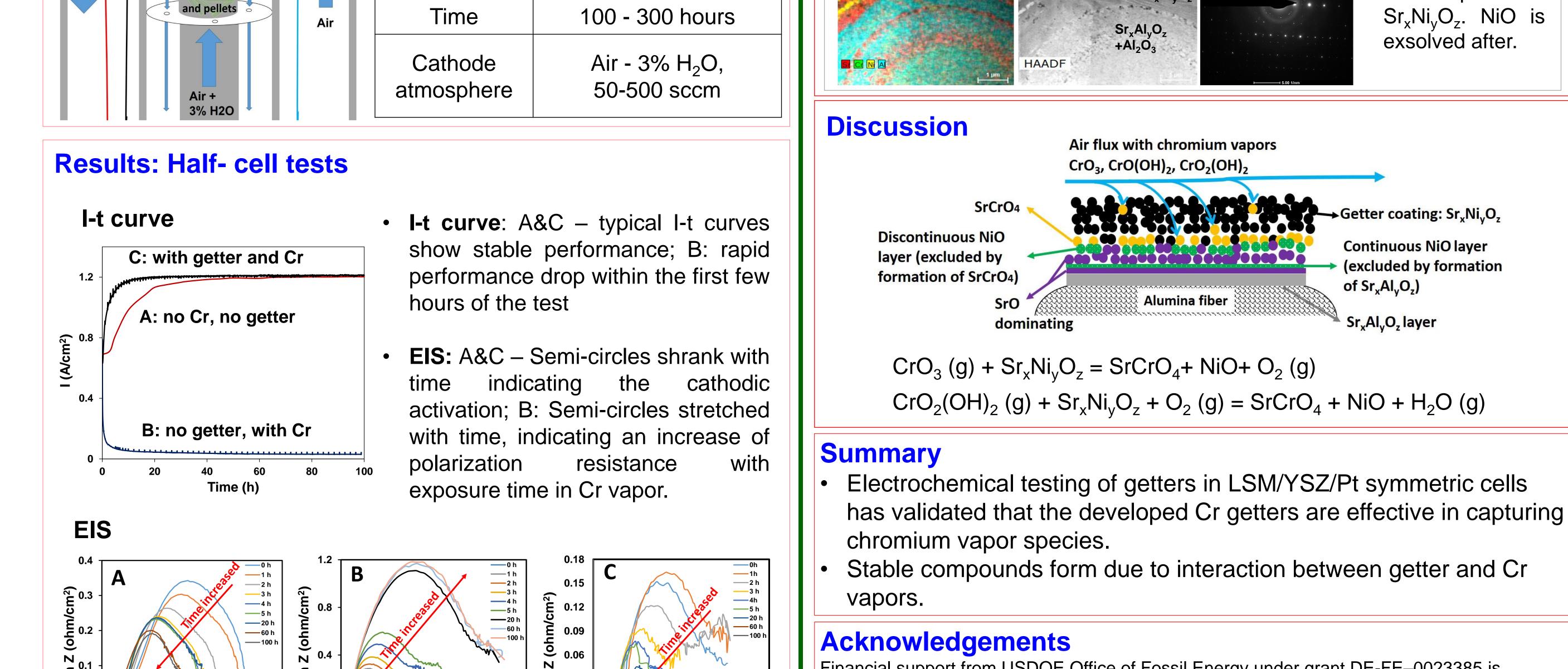
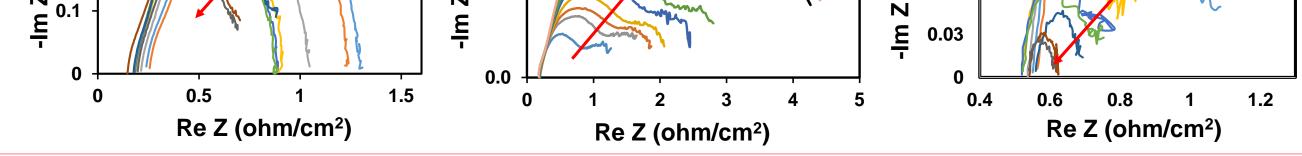


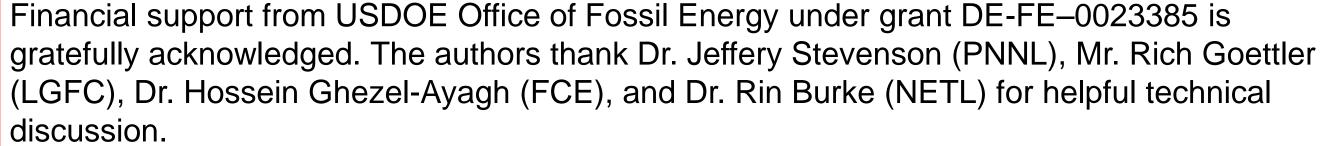
Mitigation of Cathode Poisoning Using Chromium Getters

Chiving Liang, Boxun Hu, Byung Jun, Weyshla Rodriguez, Ashish N. Aphale, Prabhakar Singh

Department of Materials Science and Engineering, Center for Clean Energy Engineering, University of Connecticut, Storrs, CT 06269 USA


Abstract: Gas phase chromium contaminants, originating from the metallic cell to cell interconnect and balance of plant (BoP) components, is one of the major causes for cathode degradation in solid oxide fuel cell (SOFC) power systems. Details of chromium gettering technique, which has effectively mitigated the cathode poisoning by capturing the chromium vapor before it reaches to the electrochemically active lanthanum strontium manganite(LSM) cathodes. Comparable experiments conducted up to 300 hours have showed that the half-cells in the presence of a chromium getter and chromium vapor remain stable similar to the half-cell in absence of Cr vapors and a getter. Sintered Cr₂O₃ granules were used as constant chromium source. The validation tests at different cathode flow rates between 50-500 sccm have been completed. EIS, XRD, FIB-TEM, and SEM-EDS techniques have been employed for the characterization of the pretest and posttest samples. SEM-EDS data show that the chromium is captured by the getter within a short distance of 2-5 mm during 100-300 hours tests and no chromium species is detected on the posttest lanthanum strontium manganite (LSM) cathode. Mechanisms of chromium poisoning and capturing is discussed.


Background: LSM serves as the state-of-the-art SOFC cathode. Chromium vapor species $\{CrO_2(OH)_2, CrO_3\}$ originating from BoP components as well as metallic interconnects poison LSM cathode by the reaction and formation of $(Mn,Cr)_3O_4/SrCrO_4$ and deposition of Cr_2O_3 at triple phase boundaries (TPB). SOFC cathode degrades rapidly after TPBs are blocked. In this study, *in-operando* electrochemical validation of the chromium getters has been performed through monitoring the cathode performance and posttest characterization.


Objective:

- Develop cost effective getter to mitigate LSM cathode degradation caused by chromium poisoning.
- Electrochemically validate the efficacy of developed chromium getters.
- Characterize getter and develop gettering mechanism.

Experimental Approaches						Characterization of Chromium Getters		
Support	Getter	Gette mater	Sr Sr	Ni _y O _z compound		SEM - EDS Flow rate effect on chromium profile	XRD Chromium getter pretest and posttest	
		Materi synthe	solution of	ng supports in aqueous f Sr(NO ₃) ₂ : Ni(NO ₃) ₂ (3:2 alcined at 600°C for 6 h.		1 0.9 0.8 0.7 0.7	Sr _x Ni _y O _z	
	111	Substr	ate Alu	Cordierite/ Alumina fiber board		0.6 0.5 0.4 0.4 0.3 0.3 0.3	 Signification Signification NiO NiO Corundu SrCrO₄ 	
		Substr dimens		2" (length), 0.8"-1" (dia.)		0.2 0.1 0 0 10000 20000 30000 40000	 	
Symmetric cell configuration						Distance from inlet (mm) —100 sccm_230 hrs —200 sccm_300 hrs	20(°) Stable compounde are formed	
Air			Symmetric cell	LSM/YSZ/Pt		 The getter material captures chromium species within 2-5 mm from inlet. 	 Stable compounds are formed due to reaction of getter material, substrate, and Cr vapors 	
	+ Pt YSZ		Cr source	Cr ₂ O ₃ pellets				
Air	Getter	Ref.	Cr. Getter	Sr _x Ni _y O _z over Cordierite/Alumina fiber board support		TEM – FIB Analysis	• SrCrO ₄ : formed	
	Cr vapors		Temperature	850°C		NiO SrO + Sr. Al. O	due to reactions of Cr vapors with	

