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Long term reliability of solid oxide fuel cells (SOFCs) is one of the key The reliability of the cathode contact layer as well as the SOFC stack were The structural reliability of SOFCs mainly depend on the component stresses
requirements for their commercial success. While significant developments evaluated using a generic design (inspired by the Delphi Gen-4) that is during stack operation/shutdown. Earlier results indicated that operating
have occurred at the materials and component levels of SOFCs, the mechanical representative of current generation planar SOFC stacks with large effective cell thermal gradients increase stresses compared to the isothermal state. one of
reliability of stacks under thermal gradients at normal operating and areas and flexible interconnects as illustrated in Figure 2. the strategies proposed by Oak Ridge National Laboratory (ORNL) to improve
unexpected shutdown conditions still remains a challenge. Apart from the the structural reliability of SOFCs includes identifying alternative geometries
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thermal gradients which can fail nonmetallic SOFC components, contact that have potential to reduce cell thermal gradients. |
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between electrodes and interconnects (especially the cathode side) was /ﬁ:g”:e}lgi(ij:) state of the stack. Hence, the load  The alternate geometries shall have equal of
!dentlfled as one of the weakest links that can significantly reduce performance © By (152 contributions from processing and better electrochemical performance with
In the assembled stacks. . SontactMaterial (LSM20) - gperations  are  considered  In lower thermal gradients to be considered as e 7
This poster presents the results from the reliability analyses conducted with + Cathode IC(SS441) evaluating the reliability of the viable alternatives. _ t ]
cathode contact modeling and the alternate geometry configuration . Af]Nodeét(s;i?) contact layer. Figure 3 illustrates the + Initially, SOFCs with tapered (15°, 30° & 45°) - iy " -
simulations for thermal gradient sensitivity evaluations performed to date. | fueisealGlas) 4 thermal profile and load steps used cell configurations (Figure 5) in which flow 7 c‘ﬁ?ﬁa 2 *i
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Computational modeling was used to study contact material densification Figure 2: Baseline FEA configuration for cathode contact 1000 2 their performance and reliability. i
mechanics and to assess the reliability of cathode contact as well as the stack. layer and stack reliability evaluations 200 b - w\ . Al the tapered models are simulated to
@ A continuum linear-viscous sintering model for porous materials was FEA Model Thermal Load Steps = o =i have the same active length, area and fuel o
considered and incorporated into the commercial Finite Element Analysis 1. Assumed stress free state (950°C) g o flow rate as the baseline configuration. Figure 5: Tape‘;;':j“;'g'ékgeometry
code ANSYS® to simulate contact material densification (sintering) behavior 2. Pressure load (0.2 MPa COFTLIOFESSIVE) § . The performance of alternate configurations was evaluated based on
that is dependent on time, temperature, constraints, and initial stress state. 2- ;mtengg fOftZ hours ftﬂ 950 Cd't' - 200 | metrics such as fuel utilization and stack current densities compared to a
@ The material property data needed for various cathode contact materials ' hﬁm': (OOWH 0 OpEraits sortron ol s paseline (non-tapered) configuration.
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(LSMZO’ L5C20, LSCF6428) were obtained from the sintering and diametric 5. Shutdown to room temperature (30 min) Time [hours] Table 2: Cell performance from the baseline and sensitivity study models

compression test experiments conducted at PNNL. Figure 3: Thermal profile & load steps in contact layer sintering and stack reliability FEA simulations Tapered  Active Stack Cell Voltage ~ Power  CellTemp  StackAT  Cell AT % Fuel
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Figure 1: ZnO powder densification results from the FEA model compared to analytical solution (a) Free sintering (b) ' ' ' Tl _ ’
Forge sintering with 1MPa tensile pressure (c) Densification results with LSM20 under free and forge sintering Rupture plots as shown In Figure 4 provide insights on the local effects. brian.koeppel@pnnl.gov
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