Evaluation of Cr-Gettering Material in a Generic Stack Test Fixture at Pacific Northwest National Laboratory

Y-S Matt Chou, J-P Choi, and J. W. Stevenson, K2-44, Energy Processes \& Materials, PNNL, Richland, WA 99354

 C. Liang, Boxun Hu, Weyshla Rodriguez, Ashish Aphale, and Prabhakar Singh, U. Connecticut, CT 06269-5233
Pacific Northwest

NATIONAL LABORATORY
Proudly Operated by Batielle Since 1965

Introduction:

Cr is known to cause severe cell degradation in solid oxide fue cells (SOFCS). Volatile species such as $\mathrm{CrO}_{2}(\mathrm{OH})_{2}$ and CrO_{3} have been identified as the leading poisons. Since Cr presence is interconnect material, for oxidation resistance purposes. Many attempts have been made to mitigate the problem by coatings, and their protection has been proven successful for short to midterm operation.
To further tackle the problem, U Conn. has proposed by employing Cr-gettering materials either at upstream and/or on-
cell. PNNL has teamed up with U. Conn. in FY16 to investigate the effect of gettering materials. Candidate gettering materials will be synthesized at U. Conn., and PNNL will investigate its effect on LSCF-based cell performance in a generic stack tex fixture both in upstream and on-cell arrangements. Overall the results will shed light in developing and engineering of novel and durable Cr -gettering for practical applications.

Materials and Processing

1. LSCF-based commercial cell ($5 \mathrm{~cm} \times 5 \mathrm{~cm}$) with active cathode of $4 \mathrm{~cm} \times 4 \mathrm{~cm}$ on NiO/YSZ anode support with thin YSZ electrolyte and Ceria barrie layer
2. Ce-(Mn,Co) spinel coating of AISI441 on cathode
3. Alu
4. Aluminization of AISI441 interconnect and window frame plates
5. Hyractory glass seal for WF/PEN at $930^{\circ} \mathrm{C} / 2 \mathrm{~h}$

Hybrid phlogopite mica as perimeter compressive seal

0 and Ni paste + Ni mesh as contact
7. Final seal at $900-930^{\circ} \mathrm{C} / 2 \mathrm{~h}$ and tested at $800^{\circ} \mathrm{C}$ with fuel $\mathrm{H}_{2}: \mathrm{N}_{2}=1: 1\left(\sim 4.75 \% \mathrm{H}_{2} \mathrm{O}\right)$ versus air at constan current mode ($375 \mathrm{~mA} / \mathrm{cm}^{2}$)
8. Wet air ($\sim 4.75 \% \mathrm{H}_{2} \mathrm{O}$)
9. Impedance and IV sweep tests
10. Air side heat exchanger made of alumina (99%)

Generic Stack Test Fixture

Sources of Cr
2. Partially sintered $\mathrm{Cr}_{2} \mathrm{O}_{3}$ rod $\left(1300^{\circ} \mathrm{C} 2 \mathrm{~h}\right)$

Cell with both Upstream and On-Cell Cr -Gettering

1. 2 pieces of pre-oxidized AISI441 stripes
2. Upstream placed Cr-gettering material
made at U. Conn. and PNNL
3. On-cell was applied by paste paint on cathode using LSCo $+10 \%$

Cell with Upstream Cr-Gettering only

1. In-house made gettering material only with large porosity

$$
\text { ASC4 with wet air } 6 \mathrm{~A}
$$

Post-Mortem Optical Analysis

$$
\frac{\text { Post-Mortem Optical Analysis }}{\text { Substantial cathode delamination for cell tested with Cr source }}
$$

Post-Mortem Cathode Layer EDS Analysis

1. On baseline cell and cell with Cr source and 1 foam of Cr -getter at upstream
2. EDS of 6 random spots in cathode layer

 No Cr was found in baseline cell, indicating good coatings on AISI441 metal parts, while sporadic and low concentration of Cr was found in cathode layer of cell tested with Cr source and 1 foam of Cr-getter

Post-Mortem Electrode/Electrolyte Interface EDS Analysis of Cell with Cr Source and 1 Foam of Cr getter Cr segregated along electrode/electrolyte interface with Cr / S ratio far from 1, suggesting $\mathrm{Cr}_{2} \mathrm{O}_{3}$ instead of SrCrO_{4} formation (likely by reduction process).

Summary and Conclusion

1. Cr-poisoning behavior was confirmed in LSCF-based cells with various types of Cr sources.
2. Electrochemical performance was established for baseline cell as well cells with Cr sources.
3. Validation of Cr-gettering materials was successfully demonstrated in two single cell tests: one with upstream only and one with both upstream and on-cell application.
4. Cells with Cr-gettering materials showed much lower degradation rates as compared to cells without the getter
5. Optical microscopy showed substantial electrode/electrolyte delamination for cells tested with Cr sources.
6. EDS at electrode/electrolyte interface revealed distinct Cr segregation while Cr was sporadically found in cathode layer with low concentrations.
