

POWERFUL POSSIBILITIES

Progress Update on Matrix Study of Aged SOFC Performance and Materials Degradation

Contents

Introduction to Atrex Energy, Inc
 Application of Atrex Energy product
 Technical progress
 Performance of aged cells
 Microstructure observation in aged cells
 Further work

Acknowledgement

About Atrex Energy

- Formerly Acumentrics SOFC division, established in 2000, "Powder to Power" in single facility in MA
- □ Focus on "rugged" fuel cells, pioneered small tubular SOFC
 - 30 min startup and shutdown
 - Unattended operation in remote locations with >25,000hrs
- - > 250W-10kW products
 - 250-1500 W commercial power products (NG, APG, LPG)
 - > 3kW and 10kW development products (biofuel, diesel, JP8) for the US military

FUELS and APPLICATIONS

- Natural gas, wellhead gas, LPG, JP8, biofuel
- Critical remote power, cathodic protection
- Units all utilize remote monitoring for additional reliability

Atrex Energy – Capabilities and Resources

- SOFC "Powder to Power" all in one 30,000 sq ft facility in Walpole, MA
- Employees include electrical, mechanical, chemical and material, automation, Firmware engineers and manufacturing staff
- □ Full Scale research, development and testing laboratory
 - Ceramics forming & processing
 - Commercial manufacturing
 - Power electronics
 - Prototype machining

- Thermo-mechanical design and integration
- Ground up board and firmware development

Remote Power Application

- US Coast Guard Radio
 Network Towers in Alaska
- LPG flown in by helicopter; fuel efficiency highly desirable

Remote LPG and NG Applications

Atrex Energy Tubular Cell Technology

Long Term Running Example

Hourly averaged data of the voltage and current output from a field unit.

Examples of Degradation

Stack	Tmax	Tmin	Degradation	Degradation	Total life time
No.	/°C	/°C	/%/1000hr	Interval/hrs	/hrs
1	789	724	0.3%	19425	19429
2	799	771	1.5%	14020	25106
3	769	738	0.4%	22877	29031
4	822	778	0.2%	10270	19506
5	785	765	0.7%	15063	25282
6	792	761	1.6%	18481	21913
7	784	740	1.1%	14375	14411
8	782	737	0.6%	20170	20181

Those cells offer opportunities to examine field cells in real applications, in the aspects of cell performance and microstructure change.

Project Background

Atrex Energy provides opportunity in degradation study:

- Field replaceable bundle
- Easy to remove individual cells for post stack testing
- Large quantities of units deployed in field
- Various running conditions for field units \geq

Investigation Method:

- **Microscopic analysis**
- **Electrochemical characterization** >
- Impedance spectroscopy characterization

Project Overflow

Electrochemical Characterization of Aged Cell Setup and Technique

Detailed individual cell study

Current distribution study/Regular test

Imaging of Electric Shorts

Heat signature of joule heating from an electric short can be easily picked up by a thermal camera (~0.1W)

Have not found any examples of electrical shorts in production; have found a few examples in old stacks. Useful technique for investigating degradation phenomena

e.g. cell tested in field for 9000 hrs

Expected Results from Electrochemical Characterization (Upcoming)

Comparison between low running hours vs. high running hours

Comparison between low running current vs. high running current

Comparison between low running temperature vs. high running temperature

Observation in Aged Cell Inter Connections Compound Decomposition

Cell with 8600 hours running from field

Observation in Aged Cell Ag Migration

Cell with 8600 hours running from field

Future Work

Complete the electrochemical characterization of several cells

Build correlation between impedance spectroscopy and aging behavior

Investigate the cell microstructure in more thorough details like 3D reconstruction

By end of the project period, gain more understanding of degradation for tubular cell and find mitigation solutions.

Acknowledgement

Project manager: Joe Stoffa

Harry Abernathy for discussion and guidance for cell degradation

Collaborators

Boston University: Prof. Srikanth Gopalan and his team

Atrex Energy

- Manufacturing team
- Cell engineering Team

Funding Support from SECA through contract number DE-FE0026095

