An Intermediate Temperature Metal-Supported Proton-Conducting Solid Oxide Fuel Cell Stack

17th Annual SOFC Workshop July 19, 2016

Stack Concept

Metal supported p-SOFC with internal CH₄ reforming

Research Center

2

ElectroChem Ventures

CHP System Concept & Efficiency

Assumptions

PCO-Electrolytes: Exceed Target Conductivity

Technologies Northwestern

Research Center

UCONN ElectroChem Ventures

CO₂ stability of Gen-2 Electrolyte

Technologies Northwestern

Research Center

ElectroChem Ventures

Overall Cell Performance on H₂

United Technologies Research Center Northwestern

	OCV (V)	Ohmic (Ω cm²) (electrolyte)	Non-ohmic (Ω cm²) (anode + cathode)	Total resistance (Ω cm²)	Maximum power density (W cm ⁻²)
600	1.080	0.342	0.285	0.632	0.409
550	1.105	0.418	0.682	1.112	0.280
500	1.126	0.561	2.697	3.277	0.154

 $Z_{real} [\Omega \text{ cm}^2]$

MARYLAND UCONN

ElectroChem Ventures

Cell Performance Stability Evaluation @ 500 °C

Combinatorial Electrode Development

Observation: strong composition dependence, slight diameter dependence

Research Center

United Technologies Northwestern

ElectroChem Ventures

Fuel Processing

<u>Dev. Approach</u>

Fuel Processing Test: o-SOFC Cell @ 600 °C

ADVI AN

UCONN

Subject to the EAR: ECCN EAR99 United Technologies Northwestern

ElectroChem Ventures

Fuel Processing

Internal CH₄ steam reforming

United Technologies Research Center Northwestern

UNIVERSITY OF

Dev. Approach

ElectroChem Ventures

Metal Support Design

United Technologies Northwestern

Enabling Fabrication Approach: Reactive Spray Deposition Technology (RSDT)

ADVI AND

UCONN

tion conture site page..

12

Cell Manufacturing Process: RSDT

- Flame-based deposition process
- Direct deposition of trilayer cell onto metal support
- Elimination of sintering steps

OF

UCONN

ElectroChem Ventures

RSDT Deposition Targets

Gen 1 Half Cell by RSDT Process

Achieved dense electrolyte

FIB cross section performed using FEI Helios G3

RSDT Full Cell Deposition

Anode

Anode-Electrolyte

Anode-Electrolyte-Cathode

Electrolyte on anode no electric shorts

United Technologies Research Center Northwestern I WINIVERSITY OF MARYLAND UCONN FelectroChem Ventures 16

Summary

Progress

- Cell materials
- Internal fuel processing
- Stack design
- RSDT fabrication process

- Next Steps (Major upcoming milestones)
 - Fuel cell fabrication by RSDT and performance verification
 - 100 W Stack fabrication and testing

Acknowledgements

The information, data, or work presented herein was funded in part by the Advanced Research Projects Agency-Energy (ARPA-E), U.S. Department of Energy, under Award Number DE-AR0000498.

Organization	Team Members	
Northwestern	Sossina Haile, Sihyuk Choi, Chris Kucharczyk, Daekwang Lim	
ElectroChem Ventures	John Yamanis	
UCONN	Radenka Maric, Tim Myles, Ryan Ouimet	
MARYLAND	Ichiro Takeuchi, Xiaohang Zhang, Yangang Liang	
United Technologies Research Center	Tianli Zhu, David Tew, Justin Hawkes	

Research Center

nited Technologies Northwestern

Grigorii Soloveichik, Scott Litzelman, John Tuttle, John Lemmon

Back Up

Proton Conducting Oxide

High-Throughput Material Evaluation Approach

Research Center Northwestern (Conternational Content of Content of

RSDT Anode Microstructure Refinement

Effect of Binder on Porosity and Microstructure

United Technologies Northwestern

Decreasing Binder Concentration

Decreasing Porosity

MARVIAND UCONN

ElectroChem Ventures

M4.2.1.1 RSDT Anode Microstructure Refinement

- Deposited electrolytes onto 0% and 7.5% anodes and performed resistance check
 - Check performed with Agilent 43388 milliohmmeter
 - Stack gold plate/carbon fiber mat/sample/carbon fiber mat (6 cm²) /gold plate

		(
0			

Sample	Resistivity (Ω-cm)
Base	1
Doctor bladed SS430	300
Anode (30 wt% Nafion)	144000
Half cell	>108

Half Cell 0% binder 7.5% binder

System Concept

United Technologies Northwestern

UNIVERSITY OF