

Driving Innovation *▶* **Delivering Results**

Department of Energy
Office of Fossil Energy's
Solid Oxide Fuel Cell
(SOFC) Program

17th Annual SOFC Workshop Pittsburgh, PA July 19 – 21, 2016 Shailesh D. Vora
Technology Manager, Fuel Cells
National Energy Technology Laboratory (NETL)

DOE Office of Fossil Energy (FE) Solid Oxide Fuel Cell (SOFC) Program

DOE's Clean Coal R&D Program is focused on developing and demonstrating advanced power generation and Carbon Capture and Storage (CCS) technologies

SOFC Program Mission

- Enable the generation of efficient, low-cost electricity from domestic coal and natural gas with near-zero emissions of CO₂ and air pollutants and minimal use of water in central power generation applications.
- Increase reliability, robustness, and durability of solid oxide fuel cell and stack technology.
- Provide the technology base to permit natural gas fueled distributed generation (DG) applications.

60% Efficiency (Coal HHV)

≥ 97% CO2
Capture

<0.5ppm NOx, low H2O use

Low Cost, similar footprint to IGCC

Modular Technology

Fuel-Flexible

SOFC Program Overview

Metric	Current	2020 Target	2025 Target
System Cost	>\$12,000/kWe	\$6,000/kWe	\$900/kWe
System Degradation Rate	~1.0% per 1,000 hrs	0.5 - 1.0% per 1,000 hrs	0.2% per 1,000 hrs
Cell Manufacturing Approach	Batch	Semi- Continuous	Continuous
Demonstration Scale	50 kWe Integrated System 400 kWe Prototype	1-5 MWe DG Integrated Systems	10 – 50 MWe Integrated Power System

APPROACH

- ➤ Early Applied (TRL* 2-4): R&D is focused on cell, stack and BOP related technologies critical to commercialization. NETL, academia, industry and National Labs conduct lab and bench-scale testing to improve performance and reliability and lower cost; identify and mitigate stack related degradation; and develop computational tools and models.
- ➤ Development (TRL 5-7) is focused on testing progressively larger stacks and integrated power systems. Multiple SOFC developers provide technology diversification and reduce program dependency on a single developer.

KEY MILESTONES

- > FY16/17: Demonstrate 100 kWe-class Proof-of-Concept systems
- > FY17/18: Demonstrate integrated 400 kW prototype system field test(s)
- > FY20: Demonstrate First of a kind 1 MW pilot (natural gas)
- > FY25: Demonstrate 10-50 MWe FOAK IGFC/NGFC large pilot(s)

SOFC Program Structure

Cell Technology

- R&D emphasis on anode, cathode, electrolyte and interconnect
- Electrochemical performance, durability and reliability
- Advanced materials development
- Advanced manufacturing processes
- Contaminant testing
- Failure analysis
- R&D portfolio consists of ~20 projects

NETL Infiltrated Cells Study - Constant Current Results

Cell Technology Research is focused on the cell-related technologies critical to the commercialization of SOFC technology.

Core Technology

- Applied R&D on stack technology issues (exclusive of the cell components)
- Laboratory & bench-scale testing to improve stack reliability and lower cost
- Identify and mitigate stack-related degradation
- Develop computational tools and models
- Improve reliability and lower cost of BOP components
- R&D portfolio consists of ~15 Projects

Core Technology Research is focused on technology issues – exclusive of the cell components – that are critical to the commercialization of SOFC technology.

Systems Development

- State-of-the-Art (SOA)
 - Two developers
 - Near term natural gas, long term coal-derived syngas
 - Proof-of-Concept (POC) systems
 - Fully integrated fuel cells power systems
 - Current Status: 50 kW 200 kW
 - Prototype system field test(s)
 - One award for a 400 kWe system (FuelCell Energy)

- Next generation cell and/or stack technology
- Four developers with unique concepts
- 5 10 kW stack tests

SOA Developers are validating their technology and acquiring operational experience for large-scale, integrated systems; IC developers are breaking ground on the next generation of SOFC technology

SOFC Project Portfolio – FY16

Systems Development

FuelCell Energy*
LG Fuel Cell Systems*
General Electric
Redox Power Systems

Cell Development

Argonne National Laboratory

Boston University* Case Western Reserve University Georgia Tech* **Kettering University** Montana State University National Energy Technology Lab. Oak Ridge National Laboratory Pacific Northwest National Lab. Pneumaticoat PolarOnyx Sonata SMI **Stanford University** Tennessee Technological Univ. **University of Connecticut** University of Maryland University of Pennsylvania University of South Carolina*

West Virginia University*

Core Technology (Stack & BOP)

Interconnects

NexTech Pacific Northwest Natl. Lab. Sonata

Seals

Michigan State University
Pacific Northwest Natl. Lab.

Modeling & Simulation

Natl. Renewable Energy Lab. Pacific Northwest Natl. Lab.

Balance-Of-Plant

HiFunda

InnoSense

Mohawk

Pacific Northwest Natl. Lab.

Stack Reliability & Testing

Acumentrics*

U.S. Department of the Navy Natl. Renewable Energy Lab. Oak Ridge Natl. Laboratory

* Multiple awards

The SOFC Program has a portfolio of ~40 projects, ranging from bench-scale R&D to system-scale testing

SOFC Program Metrics *FY00 – FY16*

Total DOE Funding: ~\$652M

Total Cost Share: ~\$250M

Total Number of Awards: >260

Total Number of Participants: 115

Industry 65

Academia 40

Nat'l Labs 10 (includes gov't agencies)

Since the last Workshop.....

- Testing progressively larger stacks/systems
- Continuing R&D to reduce cost, enhance performance and improve reliability
- Hosted workshop to identify critical reliability issues

Current Reliability Challenges

Technology	Topic	Issue
Cells	Manufacturing/QC	 Manufacturing reliability/quality control issues. Non- destructive tests Cell –to-cell variability
	Chemical Instability	 Long-term microstructural/chemical changes in cell Phase separation
Stacks	Manufacturing/QC	Dimensional tolerances
	Contacts	Electrode-Interconnect contact variability and degradation
	Seals	 Seal failure Corrosion of brazes/welds Delta T effects
Systems	Electrode Contamination	• Cathode poisoning (e.g., Cr)
	Anode Redox	Anode redox expansion/contraction
	Commissioning	BOP components Thermal management

SOFC Reliability – Cr Poisoning

- Surface Coating of interconnects and BOP components
 - PNNL, Nexcersis, BU and Tennessee Tech
- Cr Getter
 - U Conn
- Modified Cathode Materials
 - Georgia Tech, U Conn, BU

Multiple Approaches to Mitigate Cr Poisoning Being Pursued

SOFC Reliability – NETL Research & Innovation Center

- Electrode Engineering Nano-catalyst Infiltration
 Improves Reliability on the Cell Level
 - Efficient oxygen reduction / Degradation reduction
 - Industrial scale-up to stack level
 - Tested on various commercial cells (at 100% scale) from FY14-FY16
 - Infiltration cost of less than \$0.006/cm² via advanced manufacturing
- Modeling, analysis, and visualization tools created to evaluate and predict long-term performance degradation of relevant SOFC components
 - Accurately identify a specific mechanism of degradation and initiate a tailored real-time mitigation strategy to improve long-term performance reliability

NETL Infiltrated Cells Study - Constant Current Results

Result: ↑10% peak power, 33% ↓relative degradation, > 200% ↑ lifetime

Shiwoo Lee and Kirk Gerdes, "Functional nanostructure engineering of SOFC cathode by solution infiltration," ECS Electrochem. Lett. 2015 volume 4, issue 3, F17-F20.

U.S. Provisional Patent Application 62/191,548 filed July 13, 2015 "Method of forming catalyst layer by single step infiltration"
U.S. Provisional Patent Application 62/026,876 filed July 21, 2014 "Functional Grading of Cathode Infiltration for Spatial Control of Activity"

Technology Development Schedule

2015 2020 2025 2030 200 kWe POC 50 kWe POC Thermally • Thermally self-sustaining self-sustaining Fully integrated system Natural gas • TRL 6 • TRL 6 COMPLETED AWARDED 400 kWe Prototype Test(s) Natural gas Fully integrated system • TRL 7 AWARDED **MWe Demonstration(s) Commercial DG Systems** Natural gas Natural gas • CCS Privately funded • TRL 7-8 10 MWe Demonstration(s) IGFC/NGFC slipstream CCS TRL 7-8 50 MWe Utility-scale Demonstration(s) • First-of-a-kind • CCS • TRL 7-8 **Cell and Core Technology Development** • Cell power enhancement & reliability • Innovative stack design(s) & balance-of-plant • Modeling & systems analysis • TRL 2-5

FY16 SOFC Program Update

- One competitive solicitation
 - FOA-0001469: SOFC Core Technology and Innovative Concepts
 - Topic Area 1: SOFC Core Technology
 - Lab or bench scale R&D that improves the cost robustness, reliability and endurance of SOFC stack or BOP technology (excludes cell R&D; anode, cathode, electrolyte)
 - Propose solution to a specific stack, mechanical BOP, or operational issue
 - Partnership with an SOFC manufacturer/developer encouraged
 - Two phases, with competitive down-select for Phase II
 - Five awards, ~\$0.5M per award, 20% Participant Cost Share (Phase I)
 - Topic Area 2: Innovative Concepts
 - R&D of SOFC technology that has the potential to surpass current SOFC technology in terms of cost, robustness, reliability, or endurance
 - Novel architectures or materials sets preferred over conventional planar designs
 - Four awards, ~\$3.0M per award, 20% Participant Cost Share
- One new SBIR project
- Peer Review of six projects
- Closer collaboration with ARPA-E

SOFC Program – FY16 Awards

FOA-0001469: SOFC Core Technology and Innovative Concepts Topic Area 1 – SOFC Core Technology			
Auburn University	Chromium Vapor Sensor for Monitoring SOFC Systems		
General Electric	Highly Selective and Stable Multivariable Gas Sensors for Enhanced Robustness and Reliability of SOFC Operation		
Mohawk Innovative Technology	High Temperature Anode Recycle Blower for SOFC		
University of Connecticut	Development of Chromium and Sulfur Getter for SOFC Systems		
West Virginia University	Minimizing CR-Evaporation From Balance of Plant Components by Utilizing Cost-Effective Alumina-Forming Austenitic Steels		
Topic Area 2 – Innovative Concepts			
Acumentrics	Performance and Reliability Advancements in a Durable Low Temperature Tubular SOFC		
Cummins Power Generation	Metal-Supported Ceria Electrolyte-Based SOFC Stack for Scalable, Low Cost, High Efficiency and Robust Stationary Power Systems		
FuelCell Energy	Transformational SOFC Technology		
Redox Power Systems	Robust SOFC Stacks for Affordable and Reliable Distributed Generation Power Systems		

SOFC Program - Key Takeaways

- > Acquiring experience on fabricating and testing integrated SOFC systems
 - First fully integrated, thermally self-sustaining 50 kWe stack test completed
 - 200 kWe POC underway
 - 400 kWe prototype field test awarded
- Initiated second generation cell and stack R&D (Innovative Concepts)
 - Four projects underway
 - Four projects recently awarded
- Identified critical reliability issues
 - Nine projects addressing Cr poisoning mitigation. Four additional projects awarded in FY 2016

Cell development and Core research well-aligned with industry needs

Websites and Contact Information

Office of Fossil Energy: www.energy.gov/fe/office-fossil-energy

NETL Website: <u>www.netl.doe.gov/</u>

SOFC Program website: www.netl.doe.gov/coal/research/energy-systems/fuel-cells

Reference Shelf:

- SOFC Program FY16 Project Portfolio

- SOFC Technology Program Plan

- Technology Readiness Assessment

- Past Workshop Proceedings
- Systems Analysis
- Fuel Cell Handbook

Dr. Shailesh D. Vora
Technology Manager, Fuel Cells
National Energy Technology Laboratory
U. S. Department of Energy
412-386-7515
Shailesh.Vora@netl.doe.gov

