

Durable, Impermeable Brazes for Solid Oxide Fuel Cells

Dr. Jason D. Nicholas, Dr. Yue Qi, and Dr. Thomas R. Bieler

Department of Chemical Engineering and Materials Science Michigan State University East Lansing, MI

Funded by the Department of Energy Solid Oxide Fuel Cell Core Technology Program through Agreement Number DE-FE0023315

Research Team

• MSU:

- Jason D. Nicholas
- Yue Qi
- Thomas R. Bieler
- Quan Zhou
- Yuxi Ma
- Tridip Das

• Delphi:

- Rick Kerr (and his team ...)
- Stephanie Surface
- Bryan A. Gillispie

• NETL

• Joseph Stoffa

Lead PI, SOFC PI, Computational Materials Science PI, Metallurgy Graduate Student (Ni-based Brazes) Graduate Student (Cu and Co-based Brazes) Graduate Student (Simulations)

Metal Picture Frame Suspended SOFC Schematic

Project Objective:

Design and test new, SOFC-compatible, silver-free brazes with low oxygen and hydrogen permeability.

MICHIGAN STATE UNIVERSITY

Ag-based Brazes Can be Fabricated in Air and Don't Oxidize at High Temperatures

Metals in Region I (like Silver) Won't Oxidize in Air

Ag+Cu brazes undergo reactive air brazing

4

Oxygen Diffusivities (Solid Lines) and Hydrogen Diffusivity (Dotted Lines) for Several Common Metals

C. Smithells, W. Gale, T. Totemeier. Smithells Metals Reference Book. 8th ed.

- Type I Pores: Form During Manufacturing
- Type II Pores: Form at Braze Interface due to CuO Reduction
- Type III Pores: Form in Braze due to Water Pocket Formation

Braze Alloy Design Criteria and Evaluation Methods

Design Parameter	Target Values	Justification	97.5Ag-2.5CuO Values
Solidus Temperature (T _S)	900°C $\leq T_s \leq 1015$ °C	So the braze is solid during SOFC operation & does not alter the microstructure of previously made layers	912°C
Linear Coefficient of Thermal Expansion (CTE)	7 ppm/K ≤25-750°C CTE≤ 16 ppm/K	To prevent surface oxide spallation. 25-750°C YSZ CTE=9 ppm/K ¹ . 25-750°C 441 Steel CTE=12ppm/K ¹ .	~21 ppm/K ² Non-passivating, spallation/reduction prone CuO forms on the surface in air ³
Ductility	≥3%	So the braze can withstand YSZ- 441 thermal expansion mismatch stress	Sufficient ⁴ , but unknown
Vapor Pressure	750°C Vapor Pressure <1x10 ⁻⁸ torr	To ensure that volatilization does not degrade the braze or the protective oxide	Ag 750°C Vapor Pressure in Air = $1x10^{-5}$ torr ⁵

1. J. W. Fergus, Materials Science and Engineering A, 397, 271 (2005).

2. A. Laik, P. Mishra, K. Bhanumurthy, G. B. Kale and B. P. Kashyap, Acta Materialia, 61, 126 (2013).

3. A. Kar, S. Mandal, S. Rathod and A. K. Ray, in *Brazing and Soldering: Proceedings of theThird International Brazing and Soldering Conference April 24-26, 2006, San Antonio, TX*, J. J. Stevens and K. Weil Editors, San Antonio, TX (2006).

4. R. Kerr, Michigan State University/Delphi Cell to Retainer Braze Discussion, in, J. Nicholas Editor, Fenton, MI (2014).

5. J. L. Margrave, The Characterization of High-Temperature Vapors, John Wiley & Sons, New York (1967).

Braze Interface Design Criteria and Evaluation Methods

Design Parameter	Target Values	Justification	97.5Ag-2.5CuO Values
Wetting Angle (θ)	$ \begin{array}{c} 0^{\circ} \\ \leq \theta \\ 45^{\circ} \end{array} $	To ensure that the braze spreads through the joint during manufacturing	45° ¹ . Causes Type I pores to form in the braze
Metallurgical Bonding with 441 Steel	Interdiffusion or new phase formation	To promote good wetting and the possibility of a strong joint.	Interdiffusion
Metallurgical Bonding with YSZ	Interdiffusion or new phase formation	To promote good wetting and the possibility of a strong joint.	A Y-Cu-O phase ^{2, 3}
Braze Joint Strength (σ_B)	$\sigma_B > 120 \text{ MPa}$	So the braze can accommodate YSZ-441 CTE mismatch stress	220 MPa ¹

- 1. J. Y. Kim, J. S. Hardy and K. S. Weil, Journal of the American Ceramic Society, 88, 2521 (2005).
- 2. J. L. Shi, T. S. Yen and H. Schubert, Journal of Materials Science, 32, 1341 (1997).
- 3. J. C. Ruiz-Morales, J. Canales-Vazquez, D. Marrero-Lopez, J. Pena-Martinez, A. Tarancon, J. T. S. Irvine and P. Nunez, *Journal of Materials Chemistry*, **18**, 5072 (2008).

Brazed SOFC Design Criteria and Evaluation Methods

Design Parameter	Target Values	Justification	97.5Ag-2.5CuO Values
Oxygen and Hydrogen Conductivity $(\sigma_{O_2}, \sigma_{H_2})$	$\sigma_{O_2} < 1 \times 10^{-8} \text{ S/cm}$ $\sigma_{H_2} < 1 \times 10^{-8} \text{ S/cm}$	If no surface oxide forms, the braze should have a low oxygen conductivity to prevent Type III pores. If a surface oxide forms, the oxide should have a low oxygen conductivity to prevent Type III pores and to ensure a ductile metal braze core remains.	Ag stable above 160°C in air ¹ $\sigma_{0_2} = 2x10^{-4}$ S/cm at 750°C ² promoting Type III pores ³ .
Stability over 40,000 hours of SOFC Operation	Retention of all design parameter target values	To ensure reliable SOFC operation	Does not last past 10,000 hours of SOFC operation ⁴

- 1. I. Barin and F. Sauert, *Thermochemical data of pure substances*, Weinheim, Federal Republic of Germany ; VCH, New York, NY, USA (1989).
- 2. R. A. Outlaw, S. N. Sankaran, G. B. Hoflund and M. R. Davidson, Journal of Materials Research, 3, 1378 (1988).
- 3. J. Y. Kim, J. S. Hardy and S. Weil, International Journal of Hydrogen Energy, 32, 3655 (2007).
- 4. R. Kerr, Michigan State University/Delphi Cell to Retainer Braze Discussion, in, J. Nicholas Editor, Fenton, MI (2014).

9

Sample Thermo-Calc Computed Ni-based Ternary phase diagram at 1000°C

11

Sample Thermo-Calc Computed Ni-based Ternary phase diagram at 900°C

Sample Thermo-Calc Computed Ni-based Ternary phase diagram at 800°C

- Each corner of the hexagon is 100 mass % composition of the elements (mentioned at each corner).
- Centre of the hexagon represents 100% Ni

Outline

Background and Motivation

- Benefits of Silver-Copper Brazes
- Problems with Silver-Copper Brazes

Methods

• Results and Discussions

- Simulations
- Oxidation Behavior of Top Candidates
- Wetting Test on Different Substrates
- A Preliminary Transient Multilayer Braze System
- Conclusions

Computation Led New Alloy Design

- With the power of computation, hundreds of alloy systems can be effectively screened, providing initial candidates for further optimization;
- Various techniques, characterization methods and strategies will be applied to solve different problems.

MICHIGAN STATE UNIVERSITY

Braze Samples were Prepared with Arc Melting

Prepare raw materials from 99.99% pure metals. Select the right getter material to (Cut, clean, weight) secure the partial pressure of O₂ during melting. Purge with Ar gas→vacuum the chamber \rightarrow melt the getters → melt Cut with high-speed the sample diamond saw. Flip 5~10 times and re-melt Diameter: ~0.5" 15

Outline

Background and Motivation

- Benefits of Silver-Copper Brazes
- Problems with Silver-Copper Brazes
- Methods

• Results and Discussions

- Simulations
- Oxidation Behavior
- Wetting Tests
- A Preliminary Transient Multilayer Braze System
- Conclusions

Major Alloy Constituent Element Selection

Here, all elements from the Periodic Table were considered but after dropping elements for the following reasons

Elements Dropped	Consideration
Noble gases (He, Ne, Ar etc.)	Hardly any bonding with metals to form alloys
Pm (Z:61), Po and higher atomic number elements (Z>83)	Braze should not be radioactive
Alkali metals, Halogens and Chalcogens	Reactive with air and water, hard to mix with metal,
Bi and Lanthanide group	Braze should not have good conductivity for oxygen and hydrogen ions
Alkaline earth metals and semiconducting elements	Braze should not have high vapor pressure (≥ 0.1 Torr) at 750 $^{\circ}C$
Cd, Pb, Tl	Elements should not be toxic
Re, Pd, Ru, Pt, Au, Os, Ir, Sc and Rh	Elements should not to too expensive

25 elements remained: (B, C, Mg, Al, Si, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Nb, Mo, In, Sn, Ta, W, Ti, Y, Zr, Hf, Ag)

Here Ni (due to Low Hydrogen and Oxygen Diffusivity), Co (due to Low Hydrogen and Oxygen diffusivity), and Cu (due It's Good Wetting with YSZ) Were Chosen as Ternary Braze Base Elements

C. Smithells, W. Gale, T. Totemeier. Smithells Metals Reference Book. 8th ed.

Computations Revealed 19 Nickel-Containing Ternary Systems with at Least 1 Composition with $T_{solidus}$ >900°C & $T_{liquidus}$ <1000°C

Disqualified for lacking liquidus regions at or below 1000°C
Disqualified for lacking solidus regions at or below 900°C
Systems with alloys that were liquid or liquid + solid at or below 1000°C and solid below 900°C

No Thermocalc data available

Computations Revealed 31 Cobalt-Containing Ternary Systems with at Least 1 Composition with $T_{solidus}$ >900°C & $T_{liquidus}$ <1000°C

Co	В	С	Mg	Al	Si	V	Cr	Mn	Fe	Ni	Cu	Zn	Ga	Nb	Mo	In	Sn	Та	W	Ti	Y	Zr	Hf	Ag
В		_													-			_						
С	Co-B-C		_												Co	-has	ed 7	Cern?	arv A	411ov	v Cal	culz	tior	15
Mg	Co-B-Mg	Co-C-Mg		-											$\mathbf{c}\mathbf{v}$	Uuc		CIII	u y 1	mo	y Cu	louiu		10
Al	Co-B-Al	Co-C-Al	Co-Mg-Al		_											Г	Jotol		TC	TNT	and	TCC		\mathbf{n}
Si	Co-B-Si	Co-C-Si	Co-Mg-Si	Co-Al-Si		_											Palal	Jase.		/IIN /	anu	IUS)LD	
v	Co-B-V	Co-C-V (Co-Mg-V	Co-Al-V C	Co-Si-V		_																	
Cr	Co-B-Cr	Co-C-Cr	Co-Mg-Cr	Co-Al-Cr	o-Si-Cr Co	o-V-Cr																		
Mn	Co-B-Mn	Co-C-Mn (Co-Mg-Mi	Co-Al-Mn C	Co-Si-Mn Co	o-V-Mn	Co-Cr-Mn																	
Fe	Co-B-Fe	Co-C-Fe	Co-Mg-Fe	Co-Al-Fe	Co-Si-Fe Co	o-V-Fe	Co-Cr-Fe	Co-Mn-Fe																
N1 Cu	Co-B-Ni	$C_{0} C_{0} C_{1} C_{1}$	Co-Mg-Ni	C_0 -Al-Ni C_0	20-51-N1	o-V-Ni	Co-Cr-Ni	Co-Mn-Ni	Co-Fe-Ni	Co Ni Cu														
- Cu Zn	Co-B-Cu Co-B-Zn	$C_0 - C_2 - Z_n = 0$	Co-Mg-Cu	$C_0 - A_1 - C_0 C_0$	Co-Si-Zn	o-V-Cu	Co-Cr-Zn	Co-Mn-Zn	Co-Fe-Cu	Co-Ni-Zn	Co-Cu-Zn													
Ga	Co-B-Ga	Co-C-Ga (Co-Mg-Ga	Co-Al-Gal	o-Si-Ga Co	o-V-Ga	Co-Cr-Ga	Co-Mn-Ga	Co-Fe-Ga	Co-Ni-Ga	Co-Cu-Ga	Co-Zn-Ga												
Nh	Co-B-Nh	Co-C-Nh (Co-Mg-Nh	Co-Al-Nh C	o-Si-Nh C	o-V-Nh	Co-Cr-Nh	Co-Mn-Nh	Co-Fe-Nh	Co-Ni-Nh	Co-Cu-Nh	Co-Zn-Nh	Co-Ga-Nb											
Mo	Co-B-Mo	Co-C-Mo	Co-Mg-M	Co-Al-Mo	o-Si-Mo Co	o-V-Mo	Co-Cr-Mo	Co-Mn-Mo	Co-Fe-Mo	Co-Ni-Mo	Co-Cu-Me	Co-Zn-Mo	Co-Ga-Mo	Co-Nb-Mo										
In	Co-B-In	Co-C-In (Co-Mg-In	Co-Al-In C	o-Si-In Co	o-V-In	Co-Cr-In	Co-Mn-In	Co-Fe-In	Co-Ni-In	Co-Cu-In	Co-Zn-In	Co-Ga-In	Co-Nb-In	Co-Mo-In		_							
Sn	Co-B-Sn	Co-C-Sn (Co-Mg-Sn	Co-Al-Sn C	o-Si-Sn Co	o-V-Sn	Co-Cr-Sn	Co-Mn-Sn	Co-Fe-Sn	Co-Ni-Sn	Co-Cu-Sn	Co-Zn-Sn	Co-Ga-Sn	Co-Nb-Sn	Co-Mo-Sn	Co-In-Sn	\sim	_						
Та	Co-B-Ta	Co-C-Ta	Co-Mg-Ta	Co-Al-Ta C	o-Si-Ta Co	o-V-Ta	Co-Cr-Ta	Co-Mn-Ta	Co-Fe-Ta	Co-Ni-Ta	Co-Cu-Ta	Co-Zn-Ta	Co-Ga-Ta	Co-Nb-Ta	Co-Mo-Ta	Co-In-Ta	Co-Sn-Ta							
W	Co-B-W	Co-C-W	Co-Mg-W	Co-Al-W	Co-Si-W Co	o-V-W	Co-Cr-W	Co-Mn-W	Co-Fe-W	Co-Ni-W	Co-Cu-W	Co-Zn-W	Co-Ga-W	Co-Nb-W	Co-Mo-W	Co-In-W	Co-Sn-W	Co-Ta-W						
Ti	Co-B-Ti	Co-C-Ti	Co-Mg-Ti	Co-Al-Ti C	Co-Si-Ti Co	o-V-Ti	Co-Cr-Ti	Co-Mn-Ti	Co-Fe-Ti	Co-Ni-Ti	Co-Cu-Ti	Co-Zn-Ti	Co-Ga-Ti	Co-Nb-Ti	Co-Mo-Ti	Co-In-Ti	Co-Sn-Ti	Co-Ta-Ti	Co-W-Ti					
Y	Co-B-Y	Co-C-Y	Co-Mg-Y	Co-Al-Y C	Co-Si-Y Co	o-V-Y	Co-Cr-Y	Co-Mn-Y	Co-Fe-Y	Co-Ni-Y	Co-Cu-Y	Co-Zn-Y	Co-Ga-Y	Co-Nb-Y	Co-Mo-Y	Co-In-Y	Co-Sn-Y	Co-Ta-Y	Co-W-Y	Co-Ti-Y		_		
Zr	Co-B-Zr	Co-C-Zr	Co-Mg-Zr	Co-Al-Zr C	Co-Si-Zr Co	o-V-Zr	Co-Cr-Zr	Co-Mn-Zr	Co-Fe-Zr	Co-Ni-Zr	Co-Cu-Zr	Co-Zn-Zr	Co-Ga-Zr	Co-Nb-Zr	Co-Mo-Zr	Co-In-Zr	Co-Sn-Zr	Co-Ta-Zr	Co-W-Zr	Co-Ti-Zr C	Co-Y-Zr	\geq	_	
Hf	Co-B-Hf	Co-C-Hf C	Co-Mg-Hf	Co-Al-Hf C	Co-Si-Hf	o-V-Hf	Co-Cr-Hf	Co-Mn-Hf	Co-Fe-Hf	Co-Ni-Hf	Co-Cu-Hf	Co-Zn-Hf	Co-Ga-Hf	Co-Nb-Hf	Co-Mo-Hf	Co-In-Hf	Co-Sn-Hf	Co-Ta-Hf	Co-W-Hf	Co-Ti-Hf	Co-Y-Hf Co	-Zr-Hf		
Ag	Co-B-Ag	Co-C-Ag	Co-Mg-Ag	Co-Al-Ag	Co-Si-Ag Co	o-V-Ag	Co-Cr-Ag	Co-Mn-Ag	Co-Fe-Ag	Co-Ni-Ag	Co-Cu-Ag	Co-Zn-Ag	Co-Ga-Ag	Co-Nb-Ag	Co-Mo-Ag	Co-In-Ag	Co-Sn-Ag	Co-Ta-Ag	Co-W-Ag	Co-Ti-Ag C	Co-Y-Ag Co	-Zr-Ag Co-	-Hf-Ag	/
	No liquid p	hase preser	nt in the ph	ase diagram	below 1000	0 °C																		
	There exist	s some spec	cific comp	osition zone.	, which com	pletely so	olidifies fr	om liquid pl	hase, betwe	en tempera	ture windo	w of 900 ar	nd 1000 °C											
	The compo	sition of liq	juid zone a	t 1000 °C, r	emains liqui	id or solid	1+liquid b	elow 900 °C	2															
Ag	Co-B-Ag (No liquid p There exists The compo Not availab	Co-C-Ag C hase preser s some spec sition of liq ole in databa	Co-Mg-Ag nt in the ph cific comp quid zone a ase	Co-Al-Ag C ase diagram osition zone, t 1000 °C, r	below 1000 , which com	o-V-Ag 0 °C pletely so id or solid	Co-Cr-Ag olidifies fr d+liquid b	Co-Mn-Ag om liquid pl elow 900 °C	Co-Fe-Ag	Co-Ni-Ag	Co-Cu-Ag	co-Zn-Ag w of 900 ar	Co-Ga-Ag	Co-Nb-Ag	Co-Mo-Ag	Co-In-Ag	Co-Sn-Ag	Co-Ta-Ag	Co-W-Ag	Co-Ti-Ag C	Co-Y-Ag Co	-Zr-Ag Co	-Hf-Ag	

Disqualified for lacking liquidus regions at or below 1000°C

Disqualified for lacking solidus regions at or below 900°C

Systems with alloys that were liquid or liquid + solid at or below 1000°C and solid below 900°C

No Thermocalc data available

Computations Revealed 64 Copper-Containing Ternary Systems with at Least 1 Composition with $T_{solidus}$ >900°C & $T_{liquidus}$ <1000°C

Cu	В	С	Mg	Al	Si	V	Cr	Mn	Fe	Co	Ni	Zn	Nb	Mo	In	Sn	Та	Ti	Zr	Ag
В																				
С	Cu-B-C												Cub	hond	Tom	0.443.7	1100	Cal	loti	0100
Mg	Cu-B-Mg	Cu-C-Mg		-									Cu-D	aseu	rem	ar y F	чпоу	Cal	Julati	OIIS
Al	Cu-B-Al	Cu-C-Al	Cu-Mg-Al		L										- 1				raat	D 2
Si	Cu-B-Si	Cu-C-Si	Cu-Mg-Si	Cu-Al-Si		-								Data	abase	211	115	and	ICSL	JD2
V	Cu-B-V	Cu-C-V	Cu-Mg-V	Cu-Al-V	Cu-Si-V															
Cr	Cu-B-Cr	Cu-C-Cr	Cu-Mg-Cr	Cu-Al-Cr	Cu-Si-Cr	Cu-V-Cr														
Mn	Cu-B-Mn	Cu-C-Mn	Cu-Mg-Mn	Cu-Al-Min	Cu-Si-Min	Cu-V-Mn	Cu-Cr-Mi													
Fe	Cu-B-Fe	Cu-C-Fe	Cu-Mg-Fe	Cu-Al-Fe	Cu-Si-Fe	Cu-V-Fe	Cu-Cr-Fe	Cu-Mn-Fe	Cu Es Co											
CO Ni	Cu-B-Co	Cu-C-Co	Cu-Mg-Co	Cu-AI-Co	Cu-SI-CO	Cu-V-Co	Cu-Cr-Co	Cu-Mn-Co	Cu-Fe-Co	Cu Ca Ni										
IN1 Zn	Cu-B-Ni Cu P Zn	Cu-C-Ni	Cu-Mg-Mi	Cu-AI-NI	Cu-Si-Ni	Cu - V - Ni	Cu-Cr-Ni	Cu-Mn-Ni	Cu-Fe-INI	Cu-Co-Ni	Cu Ni Zn									
ZII Nib	Cu P Nh	Cu-C-Zh	Cu-Mg-Zh Cu Mg Nh	Cu-Al-Zh	Cu-Si-Zi	Cu-V-ZII	Cu-Cr-Zi	Cu-Mn-Nh	Cu-Fe-Zh	Cu-Co-Zi	Cu Ni Nh	Cu Zn Nh								
Mo	Cu B Mo	Cu-C-NO	Cu-Mg-No	Cu-Al-No	Cu-Si-No	Cu-V-NO	Cu-Cr-Nu	Cu Mn Mo	Cu Fe Mc	Cu-Co-No	Cu Ni Mo	Cu-Zi-No	Cu Nh Mo							
In	Cu-B-In	Cu-C-In	Cu-Mg-Mo	Cu-Al-In	Cu-Si-In	Cu-V-In	Cu-Cr-In	Cu-Mn-In	Cu-Fe-In	Cu-Co-In	Cu-Ni-In	Cu-Zn-In	Cu-Nb-In	Cu-Mo-In						
Sn	Cu-B-Sn	Cu-C-Sn	Cu-Mg-Sn	Cu-Al-Sn	Cu-Si-Sn	Cu-V-Sn	Cu-Cr-Sn	Cu-Mn-Sn	Cu-Fe-Sn	Cu-Co-Sn	Cu-Ni-Sn	Cu-Zn-Sn	Cu-Nb-Sn	Cu-Mo-Sn	Cu-In-Sn					
Ta	Cu-B-Ta	Cu-C-Ta	Cu-Mg-Ta	Cu-Al-Ta	Cu-Si-Ta	Cu-V-Ta	Cu-Cr-Ta	Cu-Mn-Ta	Cu-Fe-Ta	Cu-Co-Ta	Cu-Ni-Ta	Cu-Zn-Ta	Cu-Nb-Ta	Cu-Mo-Ta	Cu-In-Ta	Cu-Sn-Ta				
Ti	Cu-B-Ti	Cu-C-Ti	Cu-Mg-Ti	Cu-Al-Ti	Cu-Si-Ti	Cu-V-Ti	Cu-Cr-Ti	Cu-Mn-Ti	Cu-Fe-Ti	Cu-Co-Ti	Cu-Ni-Ti	Cu-Zn-Ti	Cu-Nb-Ti	Cu-Mo-Ti	Cu-In-Ti	Cu-Sn-Ti	Cu-Ta-Ti			
Zr	Cu-B-Zr	Cu-C-Zr	Cu-Mg-Zr	Cu-Al-Zr	Cu-Si-Zr	Cu-V-Zr	Cu-Cr-Zr	Cu-Mn-Zr	Cu-Fe-Zr	Cu-Co-Zr	Cu-Ni-Zr	Cu-Zn-Zr	Cu-Nb-Zr	Cu-Mo-Zr	Cu-In-Zr	Cu-Sn-Zr	Cu-Ta-Zr	Cu-Ti-Zr		
Ag	Cu-B-Ag	Cu-C-Ag	Cu-Mg-Ag	Cu-Al-Ag	Cu-Si-Ag	Cu-V-Ag	Cu-Cr-Ag	Cu-Mn-Ag	Cu-Fe-Ag	Cu-Co-Ag	Cu-Ni-Ag	Cu-Zn-Ag	Cu-Nb-Ag	Cu-Mo-Ag	Cu-In-Ag	Cu-Sn-Ag	Cu-Ta-Ag	Cu-Ti-Ag	Cu-Zr-Ag	
	No liquid	phase prese	ent in the pha	ase diagran	n below 10	00 °C														
	There exis	ts some sp	ecific compo	osition zone	e, which co	mpletely s	olidifies fro	om liquid ph	ase, betwee	en temperati	ure window	of 900 and	d 1000 °C							
	The compo	osition of li	iquid zone at	t 1000 °C,	remains liq	uid or soli	id+liquid be	elow 900 °C		-										
	Not availa	ble in datal	hase																	

Disqualified for lacking liquidus regions at or below 1000°C

Disqualified for lacking solidus regions at or below 900°C

Systems with alloys that were liquid or liquid + solid at or below 1000°C and solid below 900°C

No Thermocalc data available

Ni-10Si(B) Showed Excellent Oxidation Resistance

Sample DSC Melting Point Determination Curve

23

Ni-Si (Ta, B) is a Promising System

Alloy Composition	48 hr 750°C Oxidation Resistance in Air	Solidus Temperature	Liquidus Temperature
Ni _{88.5} Si _{4.5} Cr _{7.0} <u>B_{3.1}</u> Fe _{3.0} (Commercial BNi2 Containing Iron)	Excellent	Excellent	Excellent
Ni75Si5.0Ta20	Poor	Too High (1132.1)	Too High (1138.0)
Ni ₇₃ Si _{7.0} Ta ₂₀	Good	Too High (1122.9)	Too High (1139.1)
Ni72Si7.0Ta20 B1	Good	Good (1057.6)	Good (1068.0)
Ni70Si7.0Ta20 B3	Good	Good (1059.6)	Good (1086.8)
Ni70Si10.0Ta20	Excellent	Too High (1124.1)	Too High (1162.9)
Ni ₆₀ Si _{7.0} Ta ₃₂ <u>B1</u>	Good	Good (1059.3)	Good (1070.1)
Ni ₆₁ Si _{7.0} Ta ₃₂	Marginal	Too High (1125.4)	Too High (1146.1)
Ni ₆₁ Si _{7.0} Ta ₂₅		Too High (1124.5)	Too High (1137.9)
Ni ₈₃ Si _{7.0} Ta ₁₀		Too High (1127.4)	Too High (1140.3)
Ni ₈₂ Ta ₁₀ Si7 <u>B1</u>		Good (1033.7)	Good (1074.3)
Ni90Si10	Excellent	Too High (1126.5)	Too High (1222.5)
Ni89Si10 <u>B1</u>	Excellent	Good (992.0)	Good (1032.8)

Ni-Si (Ta, B) is a Promising System

Alloy Composition	48 hr 750°C Oxidation Resistance in Air	Solidus Temperature	Liquidus Temperature
Ni _{88.5} Si _{4.5} Cr _{7.0} <u>B_{3.1}Fe_{3.0}</u> (Commercial BNi2 Containing Iron)	Excellent	Excellent	Excellent
Ni75Si5.0Ta20	Poor	Too High (11 <u>32.</u> 1)	Too High (1 <u>138</u> .0)
Ni ₇₃ Si _{7.0} Ta ₂₀	Good	Too High (1122.9)	Too High (1139.1)
Ni72Si7.0Ta20 <u>B1</u>	Good	Good (1057.6)	Good (1068.0)
Ni70Si7.0Ta20 B3	Good	Good (1059.6)	Good (1086.8)
Ni70Si10.0Ta20	Excellent	Too High (1 <u>124</u> .1)	Too High (1162.9)
Ni ₆₀ Si _{7.0} Ta ₃₂ <u>B1</u>	Good	Good (1059.3)	Good (1070.1)
Ni ₆₁ Si _{7.0} Ta ₃₂	Marginal	Too High (1125.4)	Too High (1146.1)
Ni ₆₁ Si _{7.0} Ta ₂₅		Too High (1124.5)	Too High (1137.9)
Ni ₈₃ Si _{7.0} Ta ₁₀		Too High (1127.4)	Too High (1140.3)
Ni ₈₂ Ta ₁₀ Si ₇ B 1		Good (1033.7)	Good (1074.3)
Ni90Si10	Excellent	Too High (1126.5)	Too High (1222.5)
Ni89Si10 <u>B1</u>	Excellent	Good (992.0)	Good (1032.8)

 B addition (1wt.%, nominal) will significantly suppress the melting range of Ni-Si(Ta) alloys by ~100°C.

Ni-Si (Ta, B) is a Promising System

Alloy Composition	48 hr 750°C Oxidation Resistance in Air	Solidus Temperature	Liquidus Temperature
Ni _{88.5} Si _{4.5} Cr _{7.0} <u>B</u> _{3.1} Fe _{3.0} (Commercial BNi2 Containing Iron)	Excellent	Excellent	Excellent
Ni75Si5.0Ta20	Poor	Too High (1132.1)	Too High (1138.0)
Ni ₇₃ Si _{7.0} Ta ₂₀	Good	Too High (1122.9)	Too High (1139.1)
Ni72Si7.0Ta20 <u>B1</u>	Good	Good (1057.6)	Good (1068.0)
Ni70Si7.0Ta20 B3	Good	Good (1059.6)	Good (1086-8)
Ni70Si10.0Ta20	Excellent	Too High (1124.1)	Too High (1162.9)
Ni ₆₀ Si _{7.0} Ta ₃₂ <u>B1</u>	Good	Good (1059.3)	Good (1070.1)
Ni ₆₁ Si _{7.0} Ta ₃₂	Marginal	Too High (1125.4)	Too High (1146.1)
Ni ₆₁ Si _{7.0} Ta ₂₅		Too High (1124.5)	Too High (1137.9)
Ni ₈₃ Si _{7.0} Ta ₁₀		Too High (1127.4)	Too High (1140.3)
Ni ₈₂ Ta ₁₀ Si7 B 1		Good (1033.7)	Good (1074-3)
Ni90Si10	Excellent	Too High (1126.5)	Too High (1222.5)
Ni89Si10 B1	Excellent	Good (992.0)	Good (1032.8)

- B addition (1wt.%, nominal) will significantly suppress the melting range of Ni-Si(Ta) alloys by ~100°C.
- Adding Ta into the Ni-Si system will reduce the liquidus temperature by ~60°C.

New Oxidation Mechanism can Provide a Different Angle in Alloy Design

BSE image of the cross-section of an oxidized Ni20Ta7Si1B sample (192hrs / flowing air / 750°C) and atomic percentages of different elements from an EDS line scan.

- Although Ta addition seems to decrease the oxidation resistance, a different oxidation mechanism was observed.
- As shown in the EDS
 data, the "reaction layer"
 consists of a
 homogenized zone and a
 diffusion zone where Ta
 (and Si) diffuses toward
 the surface.
- Diffusion of Ta in the
 "reaction layer" might be
 the controlling process for
 the oxidation mechanism.

In situ Braze Wetting Measurement Setup

Without Flux, Ni-based Brazes Do Not Wet Coated Stainless Steel or YSZ

With Flux, Ni-based Brazes Wet Coated Stainless Steel or YSZ

Ni20Ta7Si3B + Flux	Ni10Si1B + Flux	Pure Copper	Pure Copper + Flux
SS441 (stainless steel)	SS441 (stainless steel)	YSZ	SS441 (stainless steel)
Ni20Ta7Si3B + Flux	Ni10Si1B + Flux	Pure Copper	Pure Copper + Flux
			66441
SS441 (stainless steel)	SS441 (stainless steel)	YSZ	(stainless steel)

A Preliminary Transient Multilayer Braze System

- A prototype multilayered braze joint was produced.
- Ni-Si(B) braze + Flux were applied to join the stainless steel; pure copper was used to join the YSZ.
- Sufficient interdiffusion occurred near the braze/SS interface to ensure good bonding.
- Pure nickel in the middle stopped Cr, Fe from diffusing into the YSZ interface.
- Biggest concern is the bonding near the YSZ.

A Preliminary Transient Multilayer Braze System

- A prototype multilayered braze joint was produced.
- Ni-Si(B) braze + Flux were applied to join the stainless steel; pure copper was used to join the YSZ.
- Sufficient interdiffusion occurred near the braze/SS interface to ensure good bonding.
- Pure nickel in the middle stopped Cr, Fe from diffusing into the YSZ interface.
- Biggest concern is the bonding near the YSZ.

A Preliminary Transient Multilayer Braze System

Stainless Steel

Braze (Ni10Si1B)

Cu

- A prototype multilayered braze joint was produced.
- Ni-Si(B) braze + Flux were applied to join the stainless steel; pure copper was used to join the YSZ.
- Sufficient interdiffusion occurred near the braze/SS interface to ensure good bonding.
- Pure nickel in the middle stopped Cr, Fe from diffusing into the YSZ interface.
- Biggest concern is the bonding near the YSZ.

Conclusions

- A Cr-free, Ni-10Si(1B) braze showed *excellent oxidation resistance* that is better than the commercial BNi2 braze.
- Ta reduces the liquidus temperature of the Ni-Si system by ~60°C and changes the *oxidation mechanism*, which might provide passivation.
- A transient multilayer brazing system was explored, and a joint was successfully produced.
- Besides its application in SOFCs, the Ni-Si (Ta, B) system provides a new family of brazes for general applications.
- A systematic computation-experiment combined approach was established to *search for, fabricate, and characterize new braze candidates* for SOFC application.