SCALABLE AND COST EFFECTIVE BARRIER LAYER COATING TO IMPROVE STABILITY AND PERFORMANCE OF SOFC CATHODE

Xingbo Liu West Virginia University Scott Barnett Northwestern University

SOFC Cathodes – Performance & Stability

Sr – Segregation & Detrimental phase formation

- Infiltration of R-P phase (LNO) as Sr getter
- Barrier layer

Cr – Poisoning & Cathode/electrolyte interface

- Electroplating and EPD (Mn,Co) spinels for interconnect
- Coating and new alloys for BOP

Electrolyte

LSCF

segregation

LNO

SOFC Cathode Barrier Layers

- Chemical Compositions (GDC, SDC, etc.)
- Coating Methods (Screen Printing + Sintering)
- Functions
 - Avoid Zirconate Formation
 - Improve ORR
- Current Issues
 - Porosity
 - Thickness

Effect of Barrier Layers on ORR

B-V eqn. for charge transfer at cathode side:

M. Gong, R. Gemmen, X. Liu*, Journal of Power Sources 201 (2012) 204-218 M. Gong, R. Gemmen, D. Mebane, K. Gerdes, X. Liu: Journal of The Electrochemical Society, 162 (2014) F344-F353 Y. Li, K. Gerdes, X. Liu*, Solid State Ionics 204-205 (2011) 104-110 Y. Li, K. Gerdes, T. Horita, X. Liu* Journal of The Electrochemical Society 160 (2013) F343-F350 W. Li, M. Gong, X. Liu*, Journal of Electrochemical Society 161 (2014) F551-F560

Research Objectives

 Aim 1 - Develop a scalable and cost-effective electrophoretic deposition(EPD) coating process to form a dense barrier layer between a YSZ electrolyte and the cathode in a SOFC.

 Aim 2 - Characterize the Sr diffusion/distribution across barrier layer with the aim to determine optimum barrier layer thickness

EPD vs. Other Possible Coatings

Method	Scr <mark>een</mark>	Dip	Spin <mark>Coating</mark>	Electroplating	Thermal
	Printing	Coating			Spray
Green-body	High	High	Hig <mark>h</mark>	Low	Medium
Porosity			Sec. 1		A 1 4
Coating time	Seconds/	Seconds/	Seconds/	Minutes/hours	Seconds
(~5µm)	minutes	minutes	minutes		
Cost	Low	Low	Low	Low	Medium
Scalable	Yes	Yes	Difficult	Yes	Yes
Composition	Easy	Easy	Easy	Moderate	Easy
Control					
Thickness	Easy	Ea <mark>sy/</mark>	Easy/ moderate	Moderate	Difficult
Control (~5µm)		moderate			
Coat on non-flat	Difficult	Easy	Moderate	Easy/moderate	Easy
surface					
Sintering	Required	Required	Required	Usually not	Usually not
Method	Tape Casting	PLD	RF Sputtering ¹	CVD/ALD	EPD ²
Green-body	High	Low	Low	Low	Low
Porosity					
Coating time	Seconds/	Hours	Hours	Hours	Several
(~5µm)	minutes				minutes
Cost	Low	High	High	High	Low
Scalable	Yes	No	Yes	Yes	Yes
Composition	Easy	Moderate	Moderate	Moderate	Easy
Control					
Thickness	Easy	Moderate	Moderate	Easy/ moderate	Easy
Thickness Control (~5µm)	Easy	Moderate	Moderate	Easy/ moderate	Easy
Thickness Control (~5µm) Coat on non-flat	Easy Easy	Moderate Easy/	Moderate Easy/ moderate	Easy/ moderate Easy/ moderate	Easy Easy
Thickness Control (~5µm) Coat on non-flat surface	Easy Easy	Moderate Easy/ moderate	Moderate Easy/ moderate	Easy/ moderate Easy/ moderate	Easy Easy /moderate
Thickness Control (~5µm) Coat on non-flat surface Sintering	Easy Easy Required	Moderate Easy/ moderate Usually	Moderate Easy/ moderate Usually not	Easy/ moderate Easy/ moderate Usually not	Easy Easy /moderate Required ³

Aim 1 – EPD Technical Challenges

Prepare stable suspension

(solvent, additives, pH, concentration, temperature)

- Make substrate (YSZ) conductive (conductive polymer, carbon/graphite)
- Optimize layer composition and thickness (sintering aid, concentration)

Movement of Particles during EPD

Driving force:

The interaction of the surface charge with the electric field (accelerate particle)

Drag forces:

 Viscous drag from the liquid
The force exerted by the electric field on the counter-ions in the double layer
When a particle moves, the distortion in the double layer caused by a displacement between the center of the negative and positive charge

•CH₃CH₂OH+I₂ \rightarrow CH₃CHO+2HI \rightarrow CH₃CHO+2H⁺+2I⁻

Mechanism of EPD Coating

- 1 Flocculation by particle accumulation: the pressure exerted by the electric field enables the particles close to the deposit to prevail the inter-particle repulsion.
- 2 Particle charge neutralization mechanism: the charged particles are neutralized when they touch the electrode.
- 3 Electrochemical particle coagulation mechanism: an increase of electrolyte concentration produces a decrease of the repulsion between particles close to the electrode.

Ex: Cathode $2H_2O + 2e \rightarrow H_2 \uparrow +2OH^-$

Schematic representation of electrical double layer distortion and thinning mechanism

₩

Developing Stable Suspension

Effect of iodine concentration on (a) Zeta-potential, (b) suspension resistance and (c) the amount of deposited GDC

EPD coating of GDC on Conducting Substrates

- Suspension: 100ml ethanol+1g GDC+ 1.5g lodine
- Substrates: Stainless steel

Fig.4 (left) XRD pattern and (right) macroscopy of deposited GDC on stainless steel

Dense GDC layer formed on cathodic substrate; GDC particles are positively charged

Developing Conductive Substrate

Fig.5 . Schematic of polypyrrole synthesis process

NDA: 2-6-naphthalene-difulfonic acid disodium salt

APS: ammonium peroxydisulfate

Cost-effective polymerization process.

Preliminary Results in 2015

Possible Solutions: In-situ forming a conducting Polymer Layer

Conductive Polymer – Recent Results

(a) cross - section and (b) microstructure of polypyrrole coated on YSZ before sintering

A uniform Ppy can be coated on YSZ pellet and the thickness is less than 1um.

Deposited GDC by EPD

Macrostructure of deposited GDC before sintering

(a)cross-section and (b) surface morphology of GDC layer before sintering

Uniform and dense GDC can be formed by EPD

Deposited GDC by EPD

Morphology of GDC deposited on the polypyrrole coated YSZ pellet after sintering at 1300C

A uniform layer of GDC can be formed by EPD, the thickness is 5-8um.

Effect of Sintering Aid

Microstructure of GDC pellets (a) sintering at 1450 without sintering aid and (b) sintering at 1300 with 2mol% iron oxide

(a) temperature dependence and (b) Arrhenius plots of the ion conductivity for GDC with and without 2mol% iron oxide after sintering at 1300°C for 4h

2mol% iron oxide can be used as sintering aid to effectively improve the density with impacting the ion conductivity of GDC

Effect of Sintering Aid

Morphology of GDC with sintering aid deposited on the polypyrrole coated YSZ pellet after sintering at 1300° C

Iron oxide can be used to improve the density of GDC

Performance of Symmetric Cell

(a) EIS at 750°C and (b) temperature dependence of Ohmic resistance of symmetric cell with GDC layer with sintering aid formed by spin coating and EPD

AIM 1 – Summary & Conclusions

- A uniform layer of GDC can be formed by EPD, and the thickness is about 5-8um.
- The density of GDC formed by EPD is reliable and the adhesion between GDC and YSZ is good.
- Iron oxide can be used as sintering aid to effectively enhance the density of GDC without impacting the ion conductivity.
- Compared with spin coating, the total Ohmic resistance of symmetric cell with GDC formed by EPD is smaller.

AIM 2 - Sr Distribution/Diffusion Across GDC Barriers

- Cell preparation and performance
- Cross-sectional SEM-EDS
- Angle-lapped SEM-EDS
- Atom-probe tomography

Cell Preparation

- Anode supported cells
 - -Co-fired GDC/Y<mark>SZ/Ni-YSZ</mark>
 - –LSCF cathode fired at 1100 °C for 1 h
- Reduced co-firing temperature: 1250°C
 - -Fe₃O₄ sintering aid yields reasonably dense GDC layer
 - Reduced GDC/YSZ interdiffusion
 - Optimized cells with LSCF-GDC cathodes yield power density 1.8 Wcm⁻² (800°C, 0.7V) Gao et al., J. Mater. Chem. A (2015)

Cross-Sectional EDS

- Line scan shows increased Sr content at the ceria interlayer
- Difficult to resolve with EDS

Intensity (A.U.)

SEM-EDS Chemical Maps

- Excess Sr observed in GDC layer
- Difficult to resolve with SEM-EDS

Angle-Lapped SEM

Angle lapping used to improve SEM-EDS resolution perpendicular to layer Note that GDC layer is at top side of electrolyte

Cross-sectional image

Image after angle-lapping at 10° Vertical dimension stretched by 5.75x

Angle-Lapped SEM-EDS Maps

 Sr accumulated at GDC layer

Angle-Lapped EDS Line Scan

- Sr present throughout GDC layer
- Clear evidence of GDC/YSZ interdiffusion
- GDC layer thickness: $\sim 8 \mu m / 5.75 \sim 1.4 \mu m$

3D Atom Probe Tomography 3D-APT

- Atomic resolution 3D imaging with high chemical sensitivity
- Applied here to interface between GDC barrier layer and YSZ electrolyte (LSCF cathode)
 - Probe for impurity diffusion and reaction from LSCF to YSZ

Northwestern University Atom Probe Tomography Center

Scale of 3D-APT Measurements

- Measures very small volume (~100 x 500 nm, ~ 30x10⁶ atoms)
- Atomic resolution
- High chemical sensitivity (well below 0.1%)
- Ideal for observing interfaces

Impurities Near Grain Boundary

- Sr:
 - Present at ~ 0.2% in YSZ/GDC
 - Depleted around boundary, but slight spike at boundary

• Co

- Strongly segregated at and near boundary
- Fe:
 - Used as sintering aid at 0.2%
 - Strongly segregated at boundary

AIM 2 - Summary and Conclusions

- Reduced-temperature co-firing yields reasonably dense GDC barrier with minimal GDC/YSZ interdiffusion
- Angle-lapped SEM-EDS provides good resolution of chemical distribution across GDC and surrounding layers
- Sr present throughout GDC barrier, but no apparent accumulation in broadened GDC/YSZ interface region
- 3D-APT provides high sensitivity 3D chemical imaging
 - Confirms presence of Sr in GDC/YSZ interface region
 - Accumulation of impurities at grain boundary near interface

Future Work

<mark>(Now - Se</mark>ptember 2017)

AIM 1 – EPD Coating (WVU)

- Investigate and Optimize sintering aids to achieve fully densified GDC sintering at below 1300C
- Explore other conducting agent (carbon/graphite etc.)
- Investigate the interaction between GDC barrier layer and LSCF cathode and the effects on ORR kinetics, electrochemical performance, and longterm stability

AIM 2 – Compositional Profiling (Northwestern U)

- Carry out compositional profiling of the cells with EPD GDC layers from WVU;
- Observe compositional profiles versus GDC layer thickness and LSCF firing temperature
- Carry out additional APT measurements to get more complete atomicresolution information on Sr distributions

Acknowledgement

- NETL-SOFC Team: Shailesh Vora, Heather Guedenfeld, Steven Markovich, Briggs White (formal), Travis Shultz (formal)...
- Industrial Partner: Hussein Ghezel-Ayagh(FCE)
- Postdocs and Students:
 - WVU Shanshan Hu, Nan Zhang, Greg Collins, Wenyuan Li
 - NWU Justin Railsback

