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SOFC Cathodes — Performance & Stability

Sr — Segregation & Detrimental phase formation (;A
e

- Infiltration of R-P phase (LNO) as Sr getter s on
- Barrier layer LSCF —

Cr — Poisoning & Cathode/electrolyte interface

- Electroplating and EPD (Mn,Co) spinels for
iInterconnect

- Coating and new alloys for BOP
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SOFC Cathode Barrier Layers

e Chemical Compositions (GDC, SDC, etc.)
e Coating Methods (Screen Printing + Sintering)
 Functions

e Avoid Zirconate Formation

* |Improve ORR
 Current Issues

e Porosity mce

* Thickness _
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Effect of Barrier Layers on ORR

B-V eqn. for charge

transfer at cathode side:
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Research Objectives

Aim 1 - Develop a scalable and cost-effective
electrophoretic deposition(EPD) coating process to form
a dense barrier layer between a YSZ electrolyte and the
cathode in a SOFC.

Aim 2 - Characterize the Sr diffusion/distribution across
barrier layer with the aim to determine optimum barrier
layer thickness
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EPD vs. Other Possible Coatings

Method Screen Dip Spin Coating | Electroplating | Thermal
Printing Coating Spray

Green-body High High High Low Medium

Porosity

Coating time Seconds/ Seconds/ | Seconds/ Minutes/hours Seconds

(~5um) minutes minutes minutes

Cost Low Low Low Low Medium

Scalable Yes Yes Difficult Yes Yes

Composition Easy Easy Easy Moderate Easy

Control

Thickness Easy Easy/ Easy/ moderate | Moderate Difficult

Control (~5um) moderate

Coat on non-flat | Difficult Easy Moderate Easy/moderate Easy

surface

Sintering Required Required | Required Usually not Usually not

Method Tape Casting | PLD RF Sputtering® | CVD/ALD EPD?

Green-body High Low Low Low Low

Porosity

Coating time Seconds/ Hours Hours Hours Several

(~5um) minutes minutes

Cost Low High High High Low

Scalable Yes No Yes Yes Yes

Composition Easy Moderate | Moderate Moderate Easy

Control

Thickness Easy Moderate | Moderate Easy/ moderate Easy

Control (~5um)

Coat on non-flat | Easy Easy/ Easy/ moderate | Easy/ moderate Easy

surface moderate /moderate

Sintering Required Usually Usually not Usually not Required’

not




Aim 1 — EPD Technical Challenges

Prepare stable suspension
(solvent, additives, pH, concentration, temperature)

Make substrate (YSZ) conductive
(conductive polymer, carbon/graphite)

Optimize layer composition and thickness
(sintering aid, concentration)
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Movement of Particles during EPD
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Driving force:
The interaction of the surface charge with
the electric field (accelerate particle)

Drag forces:

1 Viscous drag from the liquid

2 The force exerted by the electric field on
the counter-ions in the double layer

3 When a particle moves, the distortion in
the double layer caused by a displacement
between the center of the negative and
positive charge

«CH,CH,OH+1,— CH,CHO-+2HI— CH,CHO+2H+2T
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Mechanism of EPD Coating

1 Flocculation by particle accumulation: the
pressure exerted by the electric field enables
the particles close to the deposit to prevail
the inter-particle repulsion.

2 Particle charge neutralization mechanism:
the charged particles are neutralized when
they touch the electrode.

3 Electrochemical particle coagulation
mechanism: an increase of electrolyte
concentration produces a decrease of the
repulsion between particles close to the

GIECtrOde. Schematic representation of electrical double layer
Ex: Cathode 7t O+ 2e—=H.-.T4+20H" distortion and thinning mechanism
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Developing Stable Suspension
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EPD coating of GDC on Conducting Substrates

e Suspension: 100ml ethanol+1g GDC+ 1.5¢g lodine

e Substrates: Stainless steel

[ntensity(Counts)

x6_GDC_20150312.ASC]
S00207= C=0.5Ga0. 2025 - Canum Gaschnm Cooe

Fig.4 (left) XRD pattern and (right) macroscopy of deposited GDC on stainless steel

2 Thatacey

Dense GDC layer formed on cathodic substrate; GDC particles are positively charged
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Developing Conductive Substrate

Fig.5 . Schematic of polypyrrole synthesis process

Q polymearization s 1.,\ _,r"! -..\. o
ek

4 Snp:;tn 4 ""\ _.-"'r I n

pyrrole polypyrrole

NDA: 2-6-naphthalene-difulfonic
acid disodium salt

APS: ammonium peroxydisulfate

Cost-effective polymerization process.
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Preliminary Results in 2015

Possible Solutions: In-situ forming a conducting Polymer Layer

N
[
WWVUSRHF 5.0kV 12.0mm x50 SE(M) 7/8/2015

- I | [ LI LI
WWVUSRF 10.0kV 21.4mm x1.00k SE(M) 7/8/2015 50.0um
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Conductive Polymer — Recent Results
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WVUSRF 20.0kV 12.0mm x4.50k SE(M) WVUSRHF 20.0kV 12.0mm x4.50k SE(M)

(a) cross - section and (b) microstructure of polypyrrole coated on YSZ before sintering

A uniform Ppy can be coated on YSZ pellet and the thickness is less than 1um.



Deposited GDC by EPD
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Macrostructure of deposited GDC before sintering

I ] I 1
WVUSREF 10.0kV 12.0mm x5.00k SE(M) 10.0um

l J 1 1 1
10.0um

WWVUSRF 10.0k 10 3mm 5.00k SE(M) 3/7/2016

(a)cross-section and (b) surface morphology of GDC layer before sintering

Uniform and dense GDC can be formed by EPD




Deposited GDC by EPD

i -’ | b
WVUSRF 20.0kV 12.0mm x1.00k SE(M) WVUSRF 20.0kV 12.0mm x5.00k SE(M)

Morphology of GDC deposited on the polypyrrole coated YSZ pellet after sintering at 1300C

A uniform layer of GDC can be formed by EPD, the thickness is 5-8um.
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Effect of Sintering Aid

L D A A B N S I
KV 12.0mm x10.0k SE| 5 5.00um VIUSAF 10.0kV 11.0mm x10.0k SE(M)

Mlcrostructure of GDC pellets (a) sintering at 1450 without smtermg aid and (b) sintering at 1300 W|th 2mol% iron oxide
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(a) temperature dependence and (b) Arrhenius plots of the ion conductivity for GDC with and without 2mol% iron oxide after sintering at 1300°C for 4h

2mol% iron oxide can be used as sintering aid to effectively improve the density with
impacting the ion conductivity of GDC
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Effect of Sintering Aid
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WYUSRE 5.0kV 12.0mm x5.00k SE(M) 10.0um WWVUSRF 10.0kV 12.0mm x5.00k SE{M)

Morphology of GDC with sintering aid deposited on the polypyrrole coated YSZ pellet after sintering at 1300°C

Iron oxide can be used to improve the density of GDC



Performance of Symmetric Cell
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(a) EIS at 750°C and (b) temperature dependence of Ohmic resistance of symmetric cell with GDC layer with sintering aid formed by
spin coating and EPD
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AIM 1 — Summary & Conclusions

e A uniform layer of GDC can be formed by EPD, and the thickness
is about 5-8um.

e The density of GDC formed by EPD is reliable and the adhesion
between GDC and YSZ is good.

 |ron oxide can be used as sintering aid to effectively enhance
the density of GDC without impacting the ion conductivity.

e Compared with spin coating, the total Ohmic resistance of
symmetric cell with GDC formed by EPD is smaller.
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AIM 2 - Sr Distribution/Diffusion Across GDC

<t

Barriers

Cell preparation and performance
Cross-sectional SEM-EDS

Angle-lapped SEM-EDS
Atom-probe tomography
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Cell Preparation

 Anode supported cells
— Co-fired GDC/YSZ/Ni-YSZ
— LSCF cathode fired at 1100 °C for 1 h

e Reduced co-firing temperature: 1250°C
—Fe;0, sintering aid yields reasonably dense GDC layer
—Reduced GDC/YSZ interdiffusion

— Optimized cells with LSCF-GDC cathodes yield power
density 1.8 Wecm™ (800°C, 0.7V) Gao et al., J. Mater.

Chem. A (2015)

Co-Fired

Drop
Cast

Screen
Printed

LSCF ~20pm
GDC~3 pm

| YSZ~10 pm

AFL~20 pm
AS ~500 pm
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Cross-Sectional EDS

GDC
* Line scan shows increased Sr

content at the ceria interlayer
* Difficult to resolve with EDS

LSCF l YSZ Ni-YSZ
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— Ce
m—
— Sr

. EDS Layered Image 1
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._ —

Distance (um)
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SEM-EDS Chemical Maps

e Excess Sr observed in GDC layer

¥ Lol

e Difficult to resolve VXLEh SEM-EDS

— opm " Toum ' Topm
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Angle-Lapped SEM

Angle lapping used to improve SEM-EDS resolution perpendicular to layer
Note that GDC layer is at top side of electrolyte

Image after angle-lapping at 10°
Cross-sectional image Vertical dimension stretched by 5.75x

o
& E
SUB030 20.0KV 15.1mm x4 50k SE(L) 1/22/2016' 20.0KV 14.1mm x1.10k
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Angle-Lapped SEM-EDS Maps

e Sraccumulated at
GDC layer

NORTHWES
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Angle-Lapped EDS Line Scan

e Sr present throughout GDC layer
e Clear evidence of GDC/YSZ interdiffusion

e GDC layer thickness: ~ 8 um /5.75~ 1.4 um

Intensity (A.U)




3D Atom Probe Tomography
3D-APT

e Atomic resolution 3D imaging with high chemical sensitivity

Applied here to interface between GDC barrier layer and YSZ
electrolyte (LSCF cathode)

— Probe for impurity diffusion and reaction from LSCF to YSZ

N

\/

 Northwestern University Atom Probe Tomography Center
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Scale of 3D-APT Measurements

e Measures very small volume (~100 x 500 nm, ~ 30x10° atoms)

Atomic resolution
High chemical sensitivity (well below 0.1%)

e |deal for observing interfaces
SEM 3D-APT Composition TEM .  3D-APT
LSCF s §
|5 1§
(&)
GDC i '
YSZ 2
-8
Ni-YSZ i

SrOnly Zrand Ce

UNIVERSITY
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Impurities Near Grain Boundary
Fe ST WA WO

*Sr:
* Present at ~ 0.2% in YSZ/GDC

e Depleted around boundary,
but slight spike at boundary

 Strongly segregated at and
near boundary

0.6 — Co e Fe:
| Fe 5
e Used as sintering aid at 0.2%

e Strongly segregated at
boundary

Atomic %

0 50 100 150 200 250
Distance (nm)
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AIM 2 - Summary and Conclusions

 Reduced-temperature co-firing yields reasonably dense GDC barrier
with minimal GDC/YSZ interdiffusion

 Angle-lapped SEM-EDS provides good resolution of chemical
distribution across GDC and surrounding layers

e Srpresent throughout GDC barrier, but no apparent accumulation
in broadened GDC/YSZ interface region

e 3D-APT provides high sensitivity 3D chemical imaging
— Confirms presence of Srin GDC/YSZ interface region

— Accumulation of impurities at grain boundary near interface

A7
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Future Work
(Now - September 2017)

AIM 1 — EPD Coating (WVU)

Investigate and Optimize sintering aids to achieve fully densified GDC
sintering at below 1300C

Explore other conducting agent (carbon/graphite etc.)

Investigate the interaction between GDC barrier layer and LSCF cathode
and the effects on ORR kinetics, electrochemical performance, and long-
term stability

AIM 2 — Compositional Profiling (Northwestern U)

<t

Carry out compositional profiling of the cells with EPD GDC layers from
WVU;

Observe compositional profiles versus GDC layer thickness and LSCF firing
temperature

Carry out additional APT measurements to get more complete atomic-
resolution information on Sr distributions
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