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Contracts 

Work performed by LG Fuel Cell 

Systems under DOE contracts: 

 

● DE-FE0012077: SECA Coal-Based 

Systems LGFCS 

● DE-FE0023337:Improved Reliability of 

SOFC Systems 

● DE-FE0026098: Advanced Materials and 

Manufacturing 
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Outline 

● Performance Improvement  

● Cost Reduction 

● Durability 

● Block Testing  

● Advanced Materials and Manufacturing 

● Summary 
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Outline 

● Performance Improvement  

● Fuel cell system operation strategy 

● ASR improvement for longer service life 

and cost reduction 

● Cost reduction 

● Durability 

● Block Testing  

● Advanced Materials and Manufacturing 

● LGFCS Program 
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Plant Operation Options Based on Stack Performance 

● Initial ASR and ASR degradation rate are key metrics for benchmarking 
cell technology 

● System design must be able to operate over a wide range of ASR 
(starting to end-of-life) while maintaining specified stack temperature 
range 

● Operation based on current technology developed to date 
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● EIS Tech. provide ASR benefit (0.04~0.05 Ω㎠) compared with 

IST Tech. 

ASR Reduction Achievements  

•* Manufacturing QA data 
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Additional ASR Reduction Achieved using 
Nickelate Cathodes 

● Candidate nickelate cathodes have ~0.02 Ohm cm2 lower  cell ASR 

at 860C, 4bar  

7 

•4bar 



•LG data – Commercial in Confidence; Proprietary; US 

Export Controlled 

 

Current Status for Nickelates 
● Difficult to achieve complete phase stability 

● But, still promising durability even with multiple 

phases present 

● Recent further improvements in degree of phase 

instability 

8 

•Nickelate composite II (PCT238 A2) Elapsed time : 7200hr 

•Nickelate composite I (PCT222 B1) Elapsed time : 9500hr 

~6 mohm-cm2/1000hr 

•New Composite, 870C 500hrs 
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Outline 

● Performance improvement  

● Cost reduction 

● Cell and stack design changes 

● Current density 

● System simplification for cost reduction 

● Durability 

● Block Testing  

● Advanced Materials and Manufacturing 

● LGFCS Program 

 

 

9 



•LG data – Commercial in Confidence; Proprietary; US 

Export Controlled 

 

Cell & Tube Design Options for ASR 
Reduction & Power Increase 

10 

● Smaller PIC dimension has 

lower ASR contribution 

● Power increased using 

longer tube (~100W/tube) 

 

•P-Value=0.001 

PIC ASR reduction: 0.012 Ohm cm2 (PCT)  

Baseline 

66Cells 

82Cells longer tube 
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In-Block Reforming Enables Higher Power Density 

● In Block Reforming reduces stack DT to allow higher power density for the 

same air flow 

● Single tube mapping tests showed no evidence of performance loss with 

various levels of IBR 

● Low ASR enables higher current density while maintaining efficiency 

P = 19 kW 

DT = 80 °C 

IST configuration 

P = 25 kW 

DT = 80 °C 

IBR configuration 

Cell performance 

•75% IBR 

DNG + Recycle 

DNG + Recycle 

Partially Reformed 

Increasing % IBR 

No change in anode peak 
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Anode Protection System Simplification for Cost 
Reduction 

● Operational scheme results in anode redox 

● A minimal number of redox cycles required for product  

● cost reduction by 75% from early design of Anode Protection Unit   

 

•Early system designs utilized a 

separate subsystem for system 

scale APG generation 

• Pellet Redox 

• Exposure to air for 2 hrs at 900C  

• 5 cycles 
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Outline 

● Performance improvement  

● Cost reduction 

● Durability 

● Cathode 

● Anode 

● PIC 

● Degradation rate 

● Block Testing  

● Advanced Materials and Manufacturing 

● LGFCS Program 
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MnOx Accumulation, Redistribution Status of 
Understanding, Solutions 

● Mn enrichment greater at low 

temperature 
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MnOx Accumulation, Redistribution Status of 
Understanding, Solutions 

● Mn enrichment greater at low 

temperature 

15 

● MnOx source appears to be from 

throughout the cathode and CCC 

layers. No significant localized 

LSM stochiometry change 

● Even 5% A-site deficient CCC 

has free-MnOx as-fabricated. 
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MnOx Accumulation, Redistribution Status of 
Understanding, Solutions 

● Mn enrichment greater at low 

temperature 

16 

● MnOx source appears to be from 

throughout the cathode and CCC 

layers. No significant localized 

LSM stochiometry change 

● Even 5% A-site deficient CCC 

has free-MnOx as-fabricated. 

● Localized at interface (driving 

force?) 

● Overpotential and/or pO2 
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MnOx Accumulation, Redistribution Status of 
Understanding, Solutions 

● Mn enrichment greater at low 

temperature 

17 

● MnOx source appears to be from 

throughout the cathode and CCC 

layers. No significant localized 

LSM stochiometry change 

● Even 5% A-site deficient CCC 

has free-MnOx as-fabricated. 

● Localized at interface (driving 

force?) 

● Overpotential and/or pO2 

 

 ● Mn valence along interface 

● Using EELS 

 

 

As fired 

900C 

800 
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Cathode Densification – Status of 
Understanding, Solutions  

● Densification greater at high 

temperature 
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Cathode Densification – Status of 
Understanding, Solutions  

● Densification greater at high 

temperature 

 

● Densification is greatest under 

localized low pO2 if kinetics are 

high 

● Pressurized SOFC benefit higher 

pO2 

19 

● Degree of A-site deficiency 

influences densification 
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Cathode Densification – Status of 
Understanding, Solutions  

● Densification greater at high 

temperature 

 

● Densification is greatest under 

localized low pO2 if kinetics are 

high 

● Pressurized SOFC benefit higher 

pO2 

20 

● Degree of A-site deficiency 

influences densification 

● B-site dopant selection can 

reduce densification 

(B site doping) 

Acceleration test 1000hr 
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8um CA 

7um DL 8um CA 
15um CA 

Cathode Densification – Status of 
Understanding, Solutions  

● Densification greater at high 

temperature 

 

● Densification is greatest under 

localized low pO2 if kinetics are 

high 

● Pressurized SOFC benefit higher 

pO2 
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● Degree of A-site deficiency 

influences densification 

● B-site dopant selection can 

reduce densification 

● Densification increases Rp  
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Anode Degradation– Status of Understanding, 
Solutions  

● Bilayer anode+ACC versus single 

layer 

● Avoidance of interfaces 

resistance 
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925C, 4000hr 

925oC 5000hr 
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925C, high steam ,4000Hr 

Anode Degradation– Status of Understanding, 
Solutions  

● Bilayer anode+ACC versus single 

layer 

● Avoidance of interfaces 

resistance 
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● Ni accumulation along interface 

at high temp and higher Uf 
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Anode Degradation– Status of Understanding, 
Solutions  

● Bilayer anode+ACC versus single 

layer 

● Avoidance of interfaces 

resistance 
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● Ni accumulation along interface 

at high temp and higher Uf 

● Loss of TPB 

Redox event 
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Anode Degradation– Status of Understanding, 
Solutions  

● Bilayer anode+ACC versus single 

layer 

● Avoidance of interfaces 

resistance 
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● Ni accumulation along interface 

at high temp and higher Uf 

● Loss of TPB 

● Anode-side conductivity 

retention important for durability 
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Anode Degradation– Status of Understanding, 
Solutions  

● Bilayer anode+ACC versus single 

layer 

● Avoidance of interfaces 

resistance 
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● Ni accumulation along interface 

at high temp and higher Uf 

● Loss of TPB 

● Anode-side conductivity 

retention important for durability 

 

● Mn penetration through 

Electrolyte was not observed 

thus far (16000hrs) 

 

 

 

 

925C, 4000hr 

925oC 5000hr 

925C, high steam ,4000Hr 
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Primary Interconnect Degradation– Status of 
Understanding, Solutions  

● Anode-side barrier layers 

were applied to primary 

interconnect region to 

improve durability 

 

 

 

 

 

 

● Cathode side barrier layers 

further improving interface 

quality 

● Lower initial ASR 

● Improved long term 

durability 
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Durability Trends: 3-10 mohm-cm2/1000 hrs 

● New cathode bundle test (ATBT6) at 1 bar demonstrated < 7 

mohm-cm2/1k hrs over 2 year test 

● Subscale cells (PCT189) demonstrated < 3mohm-cm2/1k hrs 

over 2 year test 

● Correspond to 0.10~0.15%/1000hr power degradation rate 
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Plant Life Improved with Lower ASR and Degradation Rate 

● Reduction of degradation rate from 8 to 5 mohm-cm2/1k hrs with ASR of 

0.24 ohm-cm2 permits nearly constant power operation over 5 year life 

● ASR reduction using lower cathode Rp + Shorter PIC + thin wall substrates 

> 0.04 Ohm cm2 

● Average efficiency also significantly higher 
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Outline 

● Performance improvement  

● Cost reduction 

● Durability 

● Block Testing  

● Block Test T1418 & T1315 

● IBR Block Test T1506 

● Advanced Materials and Manufacturing 

● LGFCS Program 
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Block Testing Matching Product Cycle, Components 
and Operating Conditions 

Turbo-Generator 

Fuel Cell

Cathode

Fuel 

Cell

Anode

OGB

Anode Ejector

Cathode Ejector

Turbo-Generator

RRFCS NG “Dry Cycle” Configuration

Auxiliary

Ejector

R

E

F

O

R

M

E

R

R

E

F

O

R

M

E

R

Auxiliary

Heat Exchanger

Heat Source for Cathode Loop;

Partially-Spent Anode Gas, 

Heated Cathode Loop Air,

and Hot Recycle

De-Sulfurized

NG

Recuperator 

Initial design of block testing rigs 

Representative of cycle and components  

Not packaged for product (T13xx, T14xx) Integrated block 

Design for product 

(T1506) 
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T1418: First Block Test of EIS Technology 

   Test Identification 
● Strip 1 – EIS1 cathode & 

lower ASR interconnect 

● Strips 2-4 IST (Epsilon) 

standard strips 

 
   Test Objectives 
● Test 5000 hours with 

power degradation              

< 0.75%/1000 hrs 

   Results 
● 1.30% Power Degradation/1khrs 

● 0.30 ohm-cm2 ASR at 1500 hours 

was as expected 

● Average DC Efficiency ~ 62% 

● Completed 1450 hours on load 

 Test run short due to BOP issues 

 Decision to convert rig to IB standard 
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T1315: EIS Cathode Screening Block Test 

  Test Objective 
● Test 2000 hours with power 

degradation < 1.5%/1000 hrs 
 

  Results 
● 0.78% Power Degradation/1khrs 

● Average DC Efficiency ~ 60% 

● Completed 2049 hours on load 

Test Identification 
● 4 different cathode configurations 

● Standard IST (epsilon) 

● 3 EIS candidates 

● Lower ASR interconnect 

● IST (Epsilon) standard anode 
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33 



•LG data – Commercial in Confidence; Proprietary; US 

Export Controlled 

 

T1506: Demonstration of In-Block Reforming 

 

• Initial power 25.6 kW 

• Highest single block power 

• Test duration 511 hours on load 

• Lowest block ASR tested 

• Achieved <80°C dT 

• Strip Technology 

• EIS1 Cathode 

• Lower ASR interconnect 
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Total Power = 25.14 KW

Time on load = 510.8 hrs

 

 

True value of ASR 0.27-0.28, ~0.023 higher 

than calculated value - owing to calculation 

assumption of linear variation of Nernst voltage 

from inlet to outlet 
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• Improved block ASR from 

T1314 to T1315/T1418 

• Excellent correlation from 

bundle PBT20 to block 

T1506 

 

 

 

 

• ASR degradation rates 

tend to converge after 

longer test periods 
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Block Performance Summary 
36 

Parameter T1314 T1418 T1315 T1506 

Initial Power 
(Normalized for 5 strips) 

18.8 kW 19.5 kW 19.7 kW 25.6 kW 

Starting ASR 
(ohm-cm2) 

0.35 0.28 0.28 0.27Note 1 

Current Density  
(mA/cm2) 380 380 380 530 

Fuel 
(@ 75 – 80% Uf) Bottled CH4 PNG Bottled CH4 PNG 

Power Degradation 
(per 1000hrs) 1.2% 1.3% 0.78% Note 2 

Duration (hours) 3040 1450 2049 520Note 3 

Cell Technology Pre-Eps Eps, EIS EIS EIS + IBR 

Note 1: Accounting for non-linear Nernst voltage 

Note 2: Power Degradation rate given once test accumulates >1000hrs of test time 

Note 3: Still under test 
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Outline 

● Performance improvement  

● Cost reduction 

● Durability 

● Block Testing  

● Advanced Materials and Manufacturing 

● Task 2.0 

● Task 3.0 

● LGFCS Program 
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Advanced Materials and Manufacturing 

● Task 2.0: Identify Candidate Components 
● Cathode and Anode Ejectors 

● Cathode and Anode Pipework 

● Task 3.1: Identify Materials 
● Anode Ejector (low temp.) - continue using SS 

310/316 

● Auxiliary Ejector (high temperature) materials 
considered 
 H120, RA330, AFA25, 601, and 230  

● Task 3.2 Identify Processes 
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• additive manufacturing (AM) • spin forming 

• metal injection molding (MIM) • lost wax casting 

• hot isostatic pressing (HIP) • other processes 
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Advanced Materials Project Status Summary 

● Key Findings 
● Five candidate alloys identified based on material 

requirements 

● Preliminary cost study suggests ~50% reduction for aux. 
ejector 

● Metal Injection Molded (MIM) coupling fitting cost ~$8 & 
$9 at 50 MW quantities 

 Estimated 77% - 89% cost reduction vs low-volume 
machined component 

● Lessons Learned 
● Additive Manufacturing Process is only cost effective for 

the complex nozzle assembly 

● Other manufacturing processes are being explored 
 spin forming 

 lost wax casting 
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Summary 

● Significant progress made regarding performance 
improvements and durability.  There is a better 
understanding on how to increase the life of the 
LGFCS fuel cell.  These improvements will have a 
direct impact on reducing costs. 

 

● Block testing, though challenging, has shown that 
ASR tracks across multiple scales.  Improvements in 
cell technology and system performance allowed for 
LGFCS’s best block test to date. 

 

● The advanced materials and manufacturing project 
continues to support material selection and cost 
reduction of critical components. 
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