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REBELS CHALLENGE AND TARGETS

= Challenge: Develop an intermediate temperature fuel cell technology that could
enable the partial oxidation of CH, to CH;OH or the formation of carbon-carbon
bonds to make liquid fuels or higher value chemicals.

— This use of an electrochemical cell likens it to a small-scale gas-to-liquids
reactor (GTL).

— Electrochemical GTL has the potential to outperform small-scale GTL
systems in cost, throughput, and efficiency while keeping the footprint small.

» Targets: A competitive system would have a lower cost per capacity, high
process intensity, high selectivity, and long lifetime.
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CHALLENGES FOR CONVERTING METHANE TO
A LIQUID FUEL

» Two pathways for the direct conversion of methane (non-syn gas route) to higher
hydrocarbons — thermodynamic challenges for both pathways

— Oxidative Coupling/Selective oxidation
« 2CH, + 20, — C,H; + H,0O
« CH, + 20, —» CH,;0H
Issue: Products are more readily oxidized than CH, leading to CO,
— Non-oxidative Coupling of Methane (NOCM)
« 2CH, & C,Hz + H,

Issue: Large positive AG, high temperature required for even low
conversion, high carbon deposition

= Various approaches have been investigated for overcoming the
thermodynamic challenges

— Controlled delivery of oxygen to limit oxygen concentration including the
use of ceramic membranes or solid oxide fuel cells

— Removal of hydrogen using ceramic membranes for methane coupling to
overcome thermodynamic limitation
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OUR APPROACH - “NON-OXIDATIVE COUPLING OF
METHANE” USING A PROTON-CONDUCTING FUEL CELL

» Project Goal: Develop an intermediate temperature fuel cell system that either

dehydrogenates propane (natural gas liquids) to propylene or converts natural
gas to liquefied petroleum gas (LPG) while co-generating electricity.

» Unique Aspect: Integrate propane dehydrogenation and/or methane coupling

catalyst(s) into a proton-conducting solid oxide fuel cell to overcome the

thermodynamic limitation of the propane dehydrogenation or methane coupling

reactions.
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KEY TECHNICAL CHALLENGES

»Proton-conducting ceramic-based fuel cell that generates >200 m\W/cm? at
500°C operating on H,

»Propane dehydrogenation catalyst for producing propylene with a selectivity of
>95%

»Methane coupling catalyst for converting methane to LPG with a conversion
efficiency of >50% and selectivity >95% to gaseous products (process level, not
single pass)

»Method for integrating the propane dehydrogenation or methane coupling
catalysts into the fuel cell

»A manufacturing cost of <$2000/kW,



PROJECT TIMELINE AND MAJOR MILESTONES

= October 1, 2014 — Project initiated.

= September 30, 2015 — Demonstrate a 25 cm? single cell operating on H, at
500°C with a current density >100 mA/cm? for 50 h. (Completed using button
cell)

= December 31, 2015 - Demonstrate a 25 cm? single cell operating on propane at
500°C with a current density >50 mA/cm? for 24 h and a product yield 250% and
selectivity >95% to propylene. (In progress using button cell)

= June 30, 2016 - Demonstrate a 25 cm? single cell operating on H, at 500°C with
current density >200 mA/cm? for 100 h. (Completed using button cell)

= September 30, 2016 - Demonstrate a 25 cm? a single cell operating at 500°C on
methane (simulated shale gas) with a current density >100 mA/cm? for 100 h and
a product yield 250% and selectivity >95% to gaseous carbon-containing
species. (To be completed)



WORK STRUCTURE BREAKDOWN

» Task 1 — PDH and NOCM Catalyst Development
» Task 2 — Proton-Conducting Electrolyte Development
» Task 3 - Anode Development

= Task 4 - Fuel Cell Development and Demonstration

» Task 5 — Tech-to-Market (T2M)



METHANE COUPLING AND ALKANE
DEHYDROGENATION CATALYST DEVELOPMENT

= Methane coupling and alkane N ? °F
dehydrogenation catalysts are based upon \Single-site PY S?
Argonne/llT “single-site” metal catalyst FeinSiO, ® O
technology being developed in our BES- 2
funded catalysis program. An example of a

single-site metal catalyst is Fe/SiO,. Dehydrogenation TOF (hY)
Catalyst
= Coking is a major cause of catalyst t=0h t=18h Selectivity
deactivation in methane coupling and
alkane dehydrogenation processes. Fe'/sio, 4.3 5.5 >99%
“Single-site” catalysts are less prone to Fe® NPs 45.5 ; 32%

coking than conventional supported metal

nanoparticle catalysts. Bulk Fe,0,/SiO, Low activity and selectivity

Fresh NP catalyst Jlll Usad\NP catalyst [l Used single-sife




PROPANE DEHYDROGENATION CATALYST
DEVELOPMENT

» Challenges
— Mo.re a.ctlv_e Catalyst.r_equwed Dehydrogenation
— Maintain high selectivity to __— X+ H2  C-H activation (desired)
propylene while inhibiting cracking -~
— Could anode be used as a T~ CHy + X Cracking
support for a “single-site” C-C activation (undesired)
catalyst?
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METHANE COUPLING CATALYST
DEVELOPMENT

= Challenges 2CH, — C,Hg + H,
—No evidence that a “single-site” catalyst C,Hg — C,H, + H,
could promote C-C bond formation
— Low temperature activity (500-700°C) CH,+ CHg — CgHg + H,
— Inhibit coke formation C,Hg — CsHg + H,
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PROTON-CONDUCTING FUEL CELL
DEVELOPMENT

= Our proton-conducting solid oxide fuel cell is based upon Argonne ceramic
membrane technology developed for hydrogen separation.

Materials developed for ceramic membranes, such as yttrium-doped barium
cerate (BCY), exhibit high conductivity when operated in a proton-conducting fuel
cell.
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FUEL CELL PERFOMANCE TARGETS

= Anode
— Composition stability in simulated shale gas.

— ASR of <1.5 Q-cm? in hydrogen.
— ASR of <3 Q-cm? in simulated shale gas.

= Electrolyte
— Composition stability in simulated shale gas.

— Proton conductivity of >8 mS/cm and proton transference number
>0.90 in hydrogen.

— Proton conductivity >8 mS/cm in simulated shale gas.

= Cathode
— No targets defined.

= Fuel Cell
— Current density >200 mA/cm? operating on H, at 500°C for 100 h
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CONDUCTIVITY OF BZY ELECTROLYTE AS A
FUNCTION OF TEMPERATURE IN AIR AND H,

Cathode

Composite BZY
electrolyte

500°C

Ni-BZY composite
anode

Electrical Conductivity (S/cm)
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1000/T (K)

= Proton conductivity 8.8 mS/cm at 500°C in H, (AC impedance method).

= Proton transference number >0.95 at 500°C in H, (measured using
concentration cell).
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5CM X 5CM CELLS HAVE BEEN PRODUCED BUT
QUALITY CONTROL HAS BEEN A MAJOR ISSUE

Anode

Electrolyte

2 3 4 5 & 7
oin zi-coew _NONSIM

(:) fem 2 3 4 I 5
= 5 cm x 5 cm Test Fixture Kit for = Example of a 5 cm x 5 cm cell. Cracking and
anode or electrolyte-supported delamination have been problematic.
solid oxide fuel cells purchased
from Fuel Cell Materials.com
(division of NexTech Materials,

Ltd.)

= Exploring having a commercial vendor produce
the cells.

14 Argonne &




SCHEMATIC OF BUTTON CELL TEST SYSTEM

film (proton conducting ceramic) Spring
i

ARO3Disk /Anode (substrate)

'

Cathode (porous Pt +mesh)

pt or Ni mesh

~J

Pt leads/or gold leads
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|-V AND POWER DENSITY PERFORMANCE OF A
SINGLE BUTTON CELL OPERATING ON H,
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= Power density of 180 mW/cm? at 350 m A/cm? at 500°C
= Power density of 280 m\W/cm? at 550 mA/cm? at 600°C
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<10% LOSS IN PERFORMANCE OBSERVED
OVER 100 H OPERATING ON H, AT 500°C
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= Current density of 203 mA/cm? at t=0

= Current density of 187 mA/cm? att=101 h
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|-V AND POWER DENSITY PERFORMANCE AT
600 AND 700°C AFTER 100 H DURABILITY TEST

» |-V measured at 500°C before long-term durability test
= |-V measured at 600 and 700°C after long-term durability test
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= Power density of 300 mW/cm? at 600 mA/cm? at 500°C
= Power density of 480 mW/cm? at 900 mA/cm? at 600°C
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OPERATING AT 700°C RESULTED IN LOSS IN
CELL PERFORMANCE AT 600°C
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= Power density measured at 600°C decreased from ~300 mW/cm? to
~220 mW/cm? after operating at 700°C.

Z’ (Qcm?)

» Impedance measurement at 600°C before and after operating at 700°C shows

that the electrode polarization increased operating at 700°C .Cause of electroge
Argonne &

polarization is not known at this time. b
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METHOD DEVELOPMENT FOR INTRODUCING PROPANE
DEHYDROGENATION (PDH) CATALYST INTO FUEL CELL

Incipient Wetness Technique Slurry Coating Method

= Method typically employed industrially = Slurry consisting of PDH catalyst,
for preparing heterogeneous catalysts  LSCF, and BZY coated on to BZY

= Good dispersion of components A composite electrolyte and sintered
and B observed » SEM suggested good adhesion to the
SEM of anode after “‘ | eleCtrOIyte
introducing the '
catalyst
A
— - - =

= PDH catalyst was inactive

EDX suggests components A and B are
well-dispersed = H, treatment process regenerated

= Cells cracked when brought to PDH activity

operating temperature 20 Argonne &



IN SUMMARY

= Catalyst development

— Propane dehydrogenation catalyst technology capable of achieving >95%
selectivity to propylene has been developed.

— Non-oxidative methane coupling catalyst with activity at 600°C has been
identified.

» Intermediate temperature proton-conducting fuel cell

— Anode and electrolyte materials developed that have met all project
performance targets.

— Method for introducing PDH catalyst into fuel cell has been developed.

= Testing on propane in progress.
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