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Background observations: long-term conventional
testipon, 860 °C:

Cathode densification layer | Sgregin Mn xes*
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Densified layer (between two white TEM image with EDXS mapping
lines) is ~5 um thick (SEM image, (LSM: blue; zirconia red; MnOx green)
courtesy of LGFCS) Total of first layer + second layer: 5 ym

(CCC: cathode current collector)

*) H.-J. Wang, M. R. De Guire, G. Agnew, R. Goettler, Z. Liu, Z. Xing, A. Heuer, Met. Mater.
Trans. E, 1 [3] 263-271 (2014). DOI: 10.1007/s40553-014-0026-5.
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Project Objectives and Approach

* Implement an accelerated testing protocol to repl/icate long-term
microstructural changes in shorter times

« Understand microstructural basis of long-term performance
loss in LSM-based SOFC cathodes

« 4 cycles of cathode S Cell
formulation, testing, and Comp'n 8 Fabrication
analysis in 3 years EBHRIALG (LGFCS)
Comp’n D
* Develop strategies for Integrated Analysis; Cell Testing:
optimizing LSM-based Design Rule Accelerated &
cathodes for improved Development (CWRU Standard
& LGFCS) (CWRU & LGFCS)

long-term performance
and stability

Microstructural
Characterization
(CWRU)
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Procedures: button cell specifications

« Fabricated at LGFCS

+ Cell details:
« 8YSZ electrolyte, 32 mm dia.
* NiO-8YSZ anode (60:40 wt%)

 Cathodes: A-site deficient LSM
+ 8YSZ (50:50 wt%)

« Comp'n A: (Lay g55r 15) 0.9o0MNO3,5
(LSM 85-90)

« Comp’n B: (La, go5rg 15) 9. 9sMNO4.5 (LSM 80-95)

« Electrodes: screen printed, 9.5 mm dia., fired separately
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Procedures: button cell testing

Buion Col Calhonie Eletio e

Coaonde | omma

Pt mesh and wires attached
to both electrodes

 Cell sealed to zirconia tube
with fired glass paste

* Anode reduction followed by
24-h burn-in at OCV

» Pre-test protocols: details below

 Durability testing

* H,, 50 sccm

 Accelerated tests: 1000 °C,
0.760 A cm—2

 (Conventional tests: 900 °C,
0.380 Acm—2

|-V and EIS scans every 24 or 48 h
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Pre-test protocol: temperature parametric study
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LSM 80-95 (B) durability testing: reproducibility

Two cells, accel’'d conditions, 500 h
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Representative V-l & P-l sweeps, 0—-624 h

1.2 LSM 80-95 (B), accel'd testing 0
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Comparative V-l & P-| sweeps, Avs. B

V-l & P-l Curves
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ASR and changes over time: summary

* In durability testing and EIS: LSM 80-95 (B) had

lower:
* Initial ASR
* Final ASR
* AASR over time (Q cm? kh—1)
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Procedures: FIB Slice & View for 3DR

FIB Milling

Image
Slice

Direction , I“‘

-
T

— { e ,:._
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T dEpﬂSlﬂD’} £y

Fiducial
Marks

4, Electron
J beam

. Last Slice
each slice

150 nm thick

Image resolution:
4096*3536 pixels
Imaging mode:
backscattered
(Immersion detector)

Slice 1
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LSM 85-90 (A) microstructural evolution: 3D

reconstruction
LSM 85-90 as- after 200 h after 493 h
pore size (um) 0.20 0.34 0.42
pore tortuosity 2 1.7 1.6

normalized pore

€ € € €H>

1 26 17.4 14.2

surface area (um™')
total TPB (um™) 17.1 9.6 5.86
active TPB (um™) 10.3 8.2 5.13

Coarsening of pores, loss of pore area and TPB

Other observations —

* Phase fraction profiles: flat across cathode

« Densification at cathode-electrolyte interface? Inconclusive
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LSM 85-90 (A) microstructural evolution: TEM

as reduced

ML S,
LSM-8YSZ cathode

MnO, dispersed across Accumulation of MnO, at
cathode and CCC cathode-electrolyte interface

Other observations —
 LSM and YSZ composition profiles: flat across cathode

« Densification at cathode-electrolyte interface? Inconclusive
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LSM 80-95 (B) microstructural evolution: TEM

As received:

MnO, (=)
only in CCC

500 h accel'd
testing:
occasional
small MnO,
grains near
electrolyte
interface




A — B comparison: TEM

LSM 85-90 (A) accel’d LSM 80-95 (B), accel’'d

 More MnO observed in LSM 85 90 (untested and tested)
« Larger MnOX particles in LSM 85-90 CCC
* More pores in LSM 80-95 cathode post-testing 16



A — B comparison: 3D reconstruction

LSM 85-90 (composition A)

LSM 80-95 (composition B)

as received 000N b as received om0
conv test | accel. test test accel’d test
sample volume (pm’) 4350 3700 4525 6300 5000 5096
porosity || 17 21.9 18.4 29 26 26
fraz(t’llgrrln(‘f, o | YSZ || 42 42.6 432 33 35.5 35
LSM 41 35.5 38.4 38 38.5 39
. porosity 0.2 0.4 0.42 0.46 0.45 0.38
dia;irttelfl(im) YSZ 0.5 0.5 0.46 0.47 0.42 0.51
LSM 0.6 0.65 0.6 0.67 0.65 0.7
porosity 2.0 1.65 1.6 1.34 1.4 1.67
tortuosity YSZ 1.5 1.47 1.3 1.32 1.65 1.66
LSM 1.3 1.45 1.4 1.3 1.5 1.44
normalized porosity 26 15.7 14.2 13 13.3 15.9
surface area | YSZ 12 11.5 13 13 14 11.9
(km?) M 10 8.9 9.9 8.9 9.3 8.5
Total TPB (um?) 17.1 11 5.9 14.5 14.2 14.8
Active TPB (um?) 10.3 9.5 5.1 13.0 13 12.5

In contrast to LSM 85-90 (A), LSM 80-95 (B) shows:
« Pore refinement (!?) and increasing area and tortuosity
- Stabler TPB (total and active)




A — B comparison: ASR and TPB density

LSM 85-90, as t A\:

- active TPB 0.55 1 -SM 8390
density W 050 & 200 h
B0 + ¢
« ASR ¢ = t AN
. LSM 80-95: S 045 | o
« Higher active G, s
TPB density o 0.40 LoM 59-9>
« Lower ASR < 035 -
* QOverall: .
inverse correlation 0.30 G 9'0
between ASR and ' P
TPB density TPB density [um—]
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Summary & Conclusions
« During accelerated testing up to 500 h:

« LSM 85-90 (A) cathode:

* Pore coarsening
« MnO, segregation at electrolyte-cathode interface
* Microstructure—performance trend over time:
- TPB density ¥ e ASR A
« LSM 80-95 (B) cathode:
 Stabler microstructure » Less A-site deficient = /ess MnO,
« Higher TPB, lower ASR than LSM 85-90
* Not yet observed:

« Cathode densification at electrolyte +« Mn depletion at electrolyte

Inverse TPB - ASR relationship is emerging
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Ongoing & Future Work

Continue reproducibility studies

624-h accelerated test: microstructural analysis underway;,
look for densification layer

Thermodynamic studies to predict conditions for MnO,
formation

MnO, formation: symptom, or cause, of degradation?
Continue to explore relationship between TPB and ASR

e vs. LSM composition * Accelerated vs. conventional
testing

Composition C cells fabricated; testing & analysis are underway
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3DR in SOFCs: Triple phase boundaries (TPB)

e YSZ: 100% ionic conductor

* LSM (cathode) and Ni (anode):
100% electronic conductors

« For TPB to be active
electrochemically, it must have
percolation paths:

* lonic conductor must
connect to electrolyte

e Electronic conductor must
connect to current collector

* Pore must connect to
external atmosphere

Ni/YSZ - cemet

H,0

electrochemical
fuel oxidation:
H,+0?-H,0+2¢
at the active
3-phase boundaries

0% ion YSZ-electrolyte

3DR can definitively determine
whether TPB is active, or may be inactive
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LSM 80-95 durability testing: 624 h

Voltage
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Voltage (V)

Cathode B: 500-hr Conventional Test

Durability Testing
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Voltage(V)

Cathode B: 500-hr Conventional Test

V-l and P-l Sweeps
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Representative Bode plots, 0-624 h

' LSM 80-95 (B), accel'd testing
0.3
025 ~—0 hrs
-0.2 ——24 hrs
i ~-100 hrs
0.1 200 hrs
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i ~-500 hrs
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Representative Nyquist plots, 24—400 h

-0.35 LSM 80-95 (B), accel’d testing
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Microstructural studies

Progress as of 2016-03-08

GenA button cell

GenB button cell

TEM 3D TEM 3D
As-received \ \ \ \
acce7lir2ted V V
acci?:r:ted V V
acci?:r:ted V V V \/
- 500h 1 J N J




TEM w/EDXS mapplng
. Asreduced (0 h) as reduced e ‘.

* MnO, (red arrows)
observed sparingly across
entire cathode

« 72 hand 493 h accelerated e
testing ”

« MnO, near
cathode/electrolyte
interface

« MnO, also observed in
LSM cathode current
collector (CCC) for 500 h 500 h

« Smaller pores, but no
obvious densification
layer

e’lyte o LSM-8YSZ cathode




TEM w/EDXS of bulk LSM composition

72 h

Cation %
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Uniform LSM composition across cathode and CCC
« Same composition as in as-reduced cell (not shown)
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TEM w/EDXS of bulk 8YSZ composition
72 h

8YSZ

nominal composition
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 Uniform YSZ composition across cathodes
* 4-5cat% Mn
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Overview: 3D Reconstruction Process

1: Sample Preparation

Impregnate with epoxy

Mount with SOFC layers
exposed on two sides nﬂ

Polish specimen
Coat with Pd

Fuel Cel

2:

Preparing Area of
Interest :

Deposit Pt to protect
area of interest

Focused Ga-ion beam
(FIB): prepare two side [
trenches, one front
trench

Side trench
Side trench

50 ym -
1T-TTHNEP

3: Data Collection

lteratively “slice and view”:
* FIB sections, 150 nm thick

* Each section imaged in SEM

Data Processing
Phase segmentation
Synthesize stack of 2D images

Calculate:

e volume fractions

particle diameters

tortuosity

triple phase boundary (TP'B) density



Slide 36

1 Making steps 1 through 4 appear one at a time could be helpful here. Otherwise the slide is a bit overwhelming at first sight.
Before you leave this slide, you should briefly point out what aspects of your sample preparation were not routine, or for which you

deviated from standard practice in ways that improved your analyses.
Mark De Guire, 10/28/2014



3DR of cathode A — accelerated testing

\
\

KO 4 qu dile!
4%\ et S SR
: g1 ¥ “p A

N z-
tested for 72 h

surfaces near
cathode-electrolyte
interface

* No obvious densification layer —
consistent with TEM




GenA as received GenA 200 h

surfaces near
cathode-
electrolyte
interface



Gen A

a.s 200 h accel. 493 h accel.
received
sample volume ~ 4350 ~ 4620 ~ 4525
(Lm3)
: porosity 17 17 18.4
VOIum((ecy:;aCt'on Ysz 42 e 432
LSM 41 42 38.4
varticle porosity 0.2 0.34 0.42
diameter (Iim) YSZ 0.5 0.6 0.46
LSM 0.6 0.7 0.6
porosity 2 1.7 1.6
tortuosity YSZ 1.5 1.43 1.3
LSM 1.3 1.35 1.4
normalized | porosity 26 17.4 14.2
surface area YSZ 12 10 13
(um™) LSM 10 7.6 9.88
Total TPB (um™) 17.1 9.6 5.86

Active TPB (um’

4B W | A . A M



sample volume

(Mm?) |

volume fraction POroSIty
(%) YSZ
LSM

particle diameter porosity
(Hm) Ve
LSM

porosity
tortuosity YS7
LSM

normalized porosity
surface_1area VS7
m-) LSM

Total TPB (um™)
Active TPB (p,m'z)

Gen A

as
reduced

=~ 4350

17
42
41

0.2

0.5
0.6

2

1.5
1.3

26

12
10
17.1

10.3

493 h accel.

=~ 4525

18.4
43.2
38.4

0.42

0.46
0.6
1.6
1.3
1.4

14.2

13
9.88
5.86

5.13

Gen B

as received 500 h accel

~ 6300 ~ 5096
29 26
33 35
38 39
0.46 0.38
0.47 0.51
0.67 0.7
1.34 167
1.32 166
1.3 1.44

13 15.88

13 11.88
38,9 85
14.5 14.8
13.0 12.5



Total TPB — ASR relationship

0.6

0.5

0.4

ASR (Q-cm?)
o

0.2

0.1

Calculated from Continuous ASR Data

>00 hr 200 hr #

2 4 6 8 10 12 14
Total TPB (um-2)

Ohri

16
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Active TPB — ASR relationship

0.6

0.5

0.4

ASR (Q-cm?)
o

0.2
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Calculated from Continuous ASR Data

>00 hr 200 hr o
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