REDOX

IT-SOFC Stacks for Robust/Reliable Distributed Generation
FE0026189
Project Status:

Entering Q4 out Bryan Blackburn
of 10 quarters

NETL SOFC Project Review Meeting
Pittsburgh, PA
07/21/2016

7/21/2016 REDOX POWER SYSTEMS LLC 1



NETL Project Objectives

* Purpose: To further develop high power density,
intermediate temperature SOFC stacks for reliable

distributed generation.

* The objective of the overall project is to improve
performance/durability of IT-SOFC stacks while reducing

costs through:
—the scale-up of current stack module designs from 1 kW to 5 kW

—the determination of cell and stack degradation mechanisms
—cell and stack optimization to improve long-term stability
—a cost analysis to show a 20% manufacturing cost reduction
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Project Approach

* General Approach

Bilayer electrolyte

Utilize previously developed techniques to understand degradation under
operating conditions and using accelerated test protocols (developed with
CALCE)

Improve structure, manufacturing, and metrology for cells as well as stack
assembly procedures for improved reliability

Optimize stack designs with enhanced multi-physics model (reduce thermal
gradients and mechanical stresses as stack size increased)
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Improve Stability/Reliability of the Cell

-Z" (22 cm?)

* Use techniques demonstrated in past SECA projects to study degradation mechanisms
Isotope Exchange for impact of CO,
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-Impact of H,0, CO,, Cr vapor for LSM-ESB cathode
-EIS and oxygen isotope exchange
-FIB/SEM and TEM/EDS
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Degradation Mechanism Studies

Dry Air Air + H20 (up to 20%)
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* Evaluated the impact of humidity on (Er, ,Bij g),05 (ESB) conductivity
— Conductivity measured on ESB pellets with gold contacts
— Tested primarily at 650 °C
— Humidity has no apparent impact on conductivity up to 20% H,O in air
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Isotope Exchange: Impact of Water

_Oxygen Signal
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* (Ery,Big5),05 (ESB) powder sample pretreated with 80

« Water and "°O flowed over sample during test

« Heavy water (m/z=20) was use to avoid H,O overlap with 180 (m/z=18)
* As PO, increases, water signal peaks shift to lower temperatures

* Initial Conclusions: water actively participates in surface reactions on ESB,

forming different intermediate species on surface, but still unclear whether this

impacts degradation :
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Isotope Exchange: Impact of CO,
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Multi-Physics Tool for Stack Scale-up

* Takes into account the unigue thermochemical and physical properties of the Redox materials

* Considers impacts of leakage current (electron current) on the OCV drops from theoretical Nernst potential due to
over-potentials associated with the electrolyte and electrodes

* Captures the kinetics of electrochemical and heterogeneous internal reforming reactions in the anode

Detailed Single
Channel Model

o LSM/ESB
Interconnect c cathode
& ESB/GDC

electrolyte

Metal mesh

7,
Metal mesh S
Interconnect

(a) Mole fraction of H, for 0.7V at standard fuel utilization for 0% CH, slip at 600°C inlet temp.
(b) 2D current distribution for 3 anode fuel feeds operating at 0.7 V and 600°C and a U; of 80%
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Modeling Effort in NETL Project

* Add ability to assess mechanical stress due to
thermal gradients and phenomena such as
creep at elevated temperatures

* Optimize stack design through parametric
studies

— modify cell geometry/composition and
interconnect flow field geometry)
* minimize pressure drops
* improve flow distribution
* minimize thermal gradients



Stack Thermo-Mechanical Model: Initial Results

3-cell stack geometry in Multiphysics modeling Von Mises stress of the stack cell

for thermo-mechanical study at room temperature (MPa)
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e 3-cell stack under constant load at room temperature after assembly

* Assumes perfectly flat cell

* For current stack design, stresses (~5 MPa) on the cell mainly
concentrate at cell edges and corners
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Stack Thermo-Mechanical Model: Initial Results

T(C)

690
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Temperature profile of the stack cell
operating at 1 W/cm?

Stress distribution of the stack cell
operating at 1 W/cm?
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Single channel model results

Cell Edge —
H, as fuel

* Integrated thermo-mechanical study based on temperature profile of stack is similar to
iterative-solved single channel modeling results

* Stresses increase (up to 10 MPa) as temperatures rise in the center of the stack and
concentrate mostly in the center and at end edge

* Next step is to incorporate more realistic cell geometries into model (e.g., edge curl)
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Stack Assembly Improvements

Redox Production Cells
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Stack Assembly Press
Instrumentation Upgrade
-increase size & degree of automation
-acoustic emissions

-dynamic tracking of applied load &
compression

Leak Check QC

-improved procedures
-correlation to elevated
temperature testing &
manufacturing QC information
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*Ref. US Fuel Cell Council, Document No. 04-070
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Stack Assembly Automation for Improved Reliability

 To improve reliability and stack to stack repeatability,
we upgraded our stack assembly equipment

* Pneumatic-hydraulic setup for ramp rate and setpoint
control

 Metrology improvements
— Displacement, load distribution, and acoustic emisssions

* In-situ pressure decay measurements

DAQ LC
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Initial Results Using Upgraded Assembly Setup
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* Cell Voltage (V) Cell Power Density (W/cm?2)
* Production cell

* 650 °C (exhaust temp) in H,
e Stack assembled with new setup is currently being tested
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Stack Assembly Metrology: Acoustic Emissions

* AE utilizes microphones placed around stack during assembly
— Listen for “events” (e.g., slipping or cracking)
— Analyze raw data and identify fingerprints for different events
— Helps improve quality control and development efforts

High Amplitude
Acoustic Events
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Cell Metrology and Process Improvements

* Manufacturing process improvements =2 flatter cells
— edge curl and camber can create stress concentrators
— cell cracks during assembly and/or stack operation (degradation / failure)

— 3Xreduction in average flatness (i.e., cell is flatter)
— >1.5X reduction in std deviation (i.e., more cells in batch are “flat”)

* Experiment to compare strength during assembly and after reduction
— Compress single cell with gasket, metal plates, current collectors

— Control and monitor load with automated setup
— Detect cracking event with AE technique (determine at what load event occurs)

— Use as-produced cells (NiO cermet) and reduced cells (Ni-cermet)

e Old (un-optimized) Cells
— Reduced cell: cracked along edges at about 1.5 times the standard assembly load
— As-processed cell (QC reject due to high edge curl): cracked below assembly load

* New Flatter Cells
— Reduced cell: did not crack even up to ~4 times the assembly load

 Work is on-going, but promising for higher yield of stackable cells and
increased mechanical reliability



Acoustic Emissions: Event Localization

* Explored the use of AE data for localization of
certain “events”

Excite steel plate

/hit with wrench)

4
¢

0= | | g | |
0 05 1 15 2 25 3 35 4 45 5 55 6

Red dots are what is important
(ignore green dots)

-red dots represent algorithm
prediction of source of sound
-accuracy of ~+10 mm

-method works with metal, but will it

work with ceramic & metal?
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Acoustic Emissions: Event Localization

QC Reject Cell

Redox Algorithm Indicated
Locations of Sound Source

* Initial results for localization on SOFC during assembly is encouraging

e Additional optimization possible with algorithm improvements and additional
microphones

 Technique will be used to pinpoint source of mechanical failure to help us in design and
assembly optimization

* We are also utilizing AE during high temperature testing for general “event” detection
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Reduce Stack Degradation

Syringe Pump
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Extensively instrumented to capture dynamic behavior

Stack Lifecycle Analysis Modeled and Evaluated Using:
* Strength, creep, and acoustic emission spectroscopy data of stack materials & components

* Multiphysics modeling of components

* Long-term measurements under normal operational conditions
* Power output, voltage changes, component conductivity

* Accelerated stack testing under extreme temperature and load
* Modeling of material and operational costs over lifetime of stack
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Developing Accelerated Test Protocols

Define system and identify
elements and functions to be analyzed

!

Identify potential failure modes

A 4

Identify life cycle
profile

A

— Identify potential failure causes

}

Identify potential failure mechanisms

v
Identify failure models

v

Prioritize failure mechanisms

Failure Mode, Mechanism and Analysis (FMMEA) Methodology
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Developing Accelerated Test Protocols

Potential . o
Compo . failure Mechanism | Observed P(.)tentlal Likelihood Severity of | Ease of
Potential mode(s) . failure of .
nent mechanism(s) | type effect occurrence | detection
causes occurrence
Type
s . Increase in
Precipitation by Chemical .. o
ionic hydration reaction Wearout polianzatlon Hum1d1ﬁed Low Low Moderate
resistance air
. Increase in Metallic
Chemical o .
Cathode s . Wearout polarization interconnect . Low
Cr-poisoning reaction . High Moderate
resistance or and gas
tube
Increase in .
Interfacial Mechanical Overstress | area specific LEEIGHon ol Low Low
. . the contact Low
delamination stress resistance
area
Structural or
Mechanical ﬁl.n Fol . .
Seal stress Wearout failure, Mismatch in Low
cEl High leak rates : Shortage of | thermal Low High
material Thermally .
. fuel and expansion
driven sealant
anode
reoxidation
Corrosion, . ..
Contapt Reactions with Chem.lcal Wearout Performgnce Reduction in Low ity Moderate
material stack reaction degradation | contact area

* I|dentified possible failure mechanisms, potential causes, and likelihood of occurrence

* Accelerated tests can be performed at elevated temperature, humidity, voltage,

pressure, vibration, etc., or in a combined manner
* The test stresses should be chosen so that they accelerate only the failure mechanisms
under consideration

* For failure mechanisms and stresses there are commonly accepted acceleration

transforms that one can start from as the first approximation
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Developing Accelerated Test Protocols

* JEDEC Microelectronic Standards
Considered for Matching with Failure
Mechanisms

¢ Also considered standard tests from the

IEC 62282-2 Fuel Cell Modules 2012

Application Condition

7/21/2016
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* Next steps

Focus on the cathode initially

— Apply degradation models

Fuel Cell Standard Failure Accelerated Monitored
Component Mechanism Test Variables Parameters
Cathode JEDEC 22-A110E Microstructural Temperature, V, I, ASR
Accelerated changes, RH
Temperature and | Surface poisoning
Humidity Test
IEC 62282-2 | Phase stability, [ Pressure V, I, ASR
Overpressure Test | Coarsening
IEC 62282-3-100 | Structural changes, | Cell current | V, I, ASR
Overload Test Chemical changes loading (A/cm?)
Anode JEDEC 22- Coarsening, Cell loading and | V, I, ASR
A105C Power | Mechanical stress Temperature
and Temperature cycling
Cycling (frequency and
amplitude)
Electrolyte IEC 62282-2 Gas | Chemical reactions, Cell loading V, I, ASR
Leakage Test Chemically induced Pressure Exhaust
mechanical stress Temperature composition
: Qualification Test Point
&) / Acceleration Test Point
100t %/ , ,
o * ..... / Acceleration Test Point
5 1 e
S W, -
s el
g_, 50 o
e °

— Determine range of parameter
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Summary of NETL Efforts

* I|nitial investigations into degradation mechanisms
— Bi,0, based electrolyte (ESB) and cathodes (LSM-ESB)
— No apparent impact of humidity
— But there is some interaction of H,0 and CO, with oxygen exchange

e Stack assembly equipment upgrades & Stack Design
— Automation of load application rate and setpoint
— Load distribution measured
— Acoustic emissions for event detection and localization
— Multiphysics model with new mechanical capabilities will be used to design
more robust stack

* Cell process improvements
— Flatter cells result in more robust cell

* Accelerated test protocols
— Use of FMMEA methodology

— ldentified existing protocols and applied to possible failure mechanisms for
cathode, electrolyte, and anode

— Next steps involve using degradation mechanisms identified by UMERC to
finalize parameter value ranges for accelerated testing
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