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Benefit to the Program 

• Carbon program goal being addressed: Develop 
and validate technologies to ensure 99 percent 
storage permanence

• Project benefits
– The PIDAS project develops and demonstrates a 

pressure-based, pulse testing technology for 
leakage detection in carbon storage reservoirs. 

– Methodologies for enhancing signal-to-noise ratio
for injection zone
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Project Overview:  
Goals and Objectives

• Demonstrate the utility of pulse testing for 
leakage detection

• Develop relevant data analyses and inversion 
methodologies

• Provide an experimental design tool for CCS 
operators to apply the technology
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Technical Status

• Task 2: Theoretical and numerical proof of 
concept studies

• Task 3: Laboratory experiments
• Task 4: Development of inversion and data 

assimilation algorithms
• Task 5: Field demonstration
• Task 6: Synthesis of results
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Why Pulse Testing?

• Has been used for reservoir characterization since 1960s

• Hypothesis: pulse testing as a leakage detection technology for CCS

• Expected advantages over other pressure-based methods
– An active monitoring method: enhanced signal-to-noise ratio, thus mitigating 

reservoir noise interference
– No net injection rate change: little interruptions to nominal reservoir 

operations
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How Does It Work?
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Proof of Concept [Task 2]
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Analytical Solutions
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Multiphase Flow Problem

12Amplitude response as a function of upper layer permeability
Sun et al., WRR, 2015
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Laboratory Experiments [Task 3]
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Clay as ‘caprock’

A Mini 3-Layer 
Repository

Aluminum plate as ‘caprock’
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Amplitude shifts due to leak
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Field Experiments [Task 5]
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Detailed Area of Study @ Cranfield, MS, January 19-31,2015
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DAS Site
• Lower Tuscaloosa 

formation
– Depth 3176 m 

(10420 ft)
– Thickness14-24 m 

(46-80 ft)
• Heterogeneous 

fluvial strata
– Permeability: 10-3 to 

104 mD 
– Porosity: 5-35%
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Lu et al, 2012



Baseline Tests
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Leak Experiments
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90-min, leak exp
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Data Only Diagnosis
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Leaks caused deviations 
in signal amplitudes

Each experiment yields one data point on the plot

Amplitude vs. Frequency



Anomaly Detection

25Sun et al., IJGGC, 2016
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Leak Rate 10 kg/min

Monitoring well 

Sensitivity Exp



Model-Based Analysis
• Can Cranfield site-

scale model 
reproduce the 
DAS pulse testing 
experiments?
– Updated the 

existing model by 
including more 
wells

– History matching
– Refined mesh 

around DAS
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UT IPARS (Integrated Parallel 
Accurate Reservoir Simulator) 
Simulation

By Baehyun Min 
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Leak Location: Global Search
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Conclusions
• Leaks will modify the system frequency response function 

and can be detected if an appropriate pulsing period is 
used

• Longer HPT pulsing periods increase coverage area
• Lower reservoir permeability or, equivalently, higher upper 

aquifer permeability, favors detection of leakage, if all other 
parameters are fixed

• The amplitude and phase of frequency response function 
provide independent information regarding the current 
system status and can be combined to locate leaky well 
locations
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Accomplishments to Date
• Task 2: Theoretical and numerical analyses

• Year 1: Established theoretical basis and validated the concept 
of pulse-testing-based leakage detection numerically

• Task 5: Field experiments
• Year 2: Demonstrated viability of the pulse testing leakage 

detection technique in the field 

• Task 3: Laboratory experiments
• Year 2&3: Performed additional validation tests

• Task 4: Data assimilation algorithms
• Year 2&3: Developing and testing algorithms
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Future Work

• Complete laboratory experiments

• Complete remaining modeling and data 
analyses

• Provide a toolbox for designing pulse 
testing experiments
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Synergy Opportunities
• The project developed a cost-effective, 

pressure-based leakage detection technique 
that can be incorporated into commercial CCS 
monitoring plans

• Collaboration with Center for Subsurface 
Modeling at UT
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Organization Chart
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Gantt Chart
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