Area of Interest 2,
Geomechanics of CO$_2$
Reservoir Seals
DE-FE0023316

Peter Eichhubl1,
Pania Newell2, Jon Olson3, Tom Dewers2

1 Bureau of Economic Geology, Jackson School of Geosciences, The University of Texas at Austin
2 Sandia National Laboratories, Albuquerque, NM
3 UT Center for Petroleum & Geosystems Engineering

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL8500
Presentation Outline

• Benefit
• Problem Statement
• Project Overview
• Methodology
• Accomplishments to Date
 – Fracture mechanics experiments
 – Fracture & leakage modeling
• Summary
Benefit to the Program

- **Program goals:** Develop characterization tools, technologies, and/or methodologies that improve the ability to predict geologic storage capacity within ±30%, improve the utilization of the reservoir by understanding how faults and fractures in a reservoir affect the flow of CO$_2$, and ensure storage permanence.
 - Area of Interest 2 – Fractured Reservoir and Seal Behavior: Develop tools and techniques to increase the accuracy and reduce the costs of assessing subsurface seal containment and the seal/reservoir interface, including the measurement of in-situ rock properties in order to develop a better understanding of seal behavior when CO$_2$ is injected into a reservoir.

- **Project is designed to**
 - *Provide calibrated and validated numerical predictive tools for long-term prediction of reservoir seal integrity beyond the engineering (injection) time scale.*
 - *Contribute toward technology ensuring 99% storage permanence in the injection zone for 1000 years.*
Problem Statement

• Sealing efficiency of CO$_2$ reservoirs has to exceed 99%.
• Design criteria are needed that establish the long term sealing capacity of CO$_2$ reservoirs and to model leakage risk.
• Top and fault seal risk assessment well established in oil & gas exploration, but:
 • scCO$_2$ and CO$_2$ brine potentially interact physically & chemically with top seal.
• Seal risk assessment criteria taking these interactions into account are needed for CO$_2$ systems.
Project Overview: Goals and Objectives

• **Perform laboratory fracture mechanics testing** to
 – gain fundamental understanding into fracture processes in chemically reactive systems and to
 – provide input parameters on fracture constitutive behavior, fracture rate and geometry, and deformation and transport processes involved in subcritical chemically assisted fracture growth for relevant top seal lithologies.

• **Derive predictive and validated numerical models** for fracture growth in chemically reactive environments relevant to CCUS top seal lithologies.

• **Validate** numerical & laboratory observations **against microstructural and textural observations** on fractures from natural CO$_2$ seeps.

• **Perform upscaled numerical simulations** that are informed by field and lab results toward predictive tools **for top seal integrity analysis**, top seal mechanical failure, and impact on CO$_2$ leakage in CCUS applications.
Fractures in CO$_2$ caprocks

Crystal Geyser field analog site

Active on 10^2 - 10^5 year time scales
Natural fracture networks

Mancos Shale at Crystal Geyser

10 m from CO$_2$ conduit

> 300 m away from CO$_2$ conduit
Methodology

• Experimental measurement of subcritical fracture propagation in various shale lithologies
 – Double torsion test, unconfined conditions
 – Short-rod test, confined conditions (scCO₂)

• Textural and compositional characterization
 – Shale material used for fracture testing
 – Fractures & CO₂ alteration in natural systems
 – Post-mortem analysis of lab test specimens

• Numerical modeling of fracture propagation in top seals
 – Fracture network modeling using JOINTS
 – Upscaled modeling for top seal deformation using Sierra Mechanics
Double torsion fracture mechanics testing

\[V = A \left(\frac{K_I}{K_{IC}} \right)^n \]

- **V**: fracture propagation velocity
- **K_I**: mode-I stress intensity factor
- **K_{IC}**: mode-I fracture toughness
- **A**: pre-exponential constant
- **n**: velocity exponent, subcritical crack index (SCI)

Sample geometry

After Atkinson, 1984

K_{IC} = fracture toughness

K^* = stress corrosion limit

Rijken, 2005
Material characterization

Marcellus Shale (carbonate-rich)
- Carbonate & clay
- Minor amounts of quartz and pyrite

Woodford Shale
- Quartz & clay
- Minor amounts of carbonate and feldspar
Woodford: dry-air-water

- Strong reduction of K_{IC} (48%) and SCI (75%) from ambient air to DI water
- Fracturing strongly facilitated in H_2O saturated conditions
- K-V curves obey power-law, indicating fracturing @ stress-corrosion regime (I)
- Load relaxation technique (lines) match constant loading rate method (squares)
- H-treatment restricts water-sample interaction to the fracture tip
- H-treatment protects K_{IC} from large weakening in DI water
- H-treatment has little effect on long-term SCI both in ambient air and DI water
- K_{IC}, SCI not obviously dependent on pH
- Non-power-law K-V curves for H-treated sample
- SCI begin > SCI Untreated > SCI end
- H-treatment protects K_{IC} from strong weakening
Woodford: effect of salinity

- K_{IC} dependency on salinity: Untreated: K_{IC} ↓ as salinity ↑.
 H-treated: K_{IC} ↑ as salinity ↑.
- Non-power-law K-V curves for H-treated samples.
- SCI begin > SCI Untreated > SCI end.
Woodford: large drop of K_{IC} and SCI between ambient to aqueous solutions.
Glass and Marcellus: less change in K_{IC} and SCI.
Results fracture mechanics testing

- K_{ic} and SCI lower in water compared to dry tests
 - Dry tests of limited applicability for aqueous subsurface systems
 - Dry tests potentially applicable to scCO$_2$ systems
- Effect of varying water chemistry minor in current tests
- Dry-out by scCO$_2$ injection could strengthen caprock
- Water increases inelastic behavior, impedes fracture growth
 - Decreased inelastic behavior under dry CO2 conditions could favor fracture growth
JOINTS fracture network model

- Boundary element code
- Linear elastic
- Pseudo-3D, accounts for elastic interaction
 - Opening-mode and mixed-mode fracture propagation
- Allows simulation of subcritical fracture propagation as function of
 - Subcritical index SCI
 - Elastic material properties
 - Distribution of nucleation sites (seed fractures)
 - For applied displacement or stress boundary conditions
Effect of var SCI, constant $K_{lc} = 1$ MPa·m$^{1/2}$
JOINTS models for Woodford
Plan view; Fractures initiate internally

KIC = 0.81
SCI = 68

KIC = 0.59
SCI = 63

KIC = 0.32
SCI = 14

KIC = 0.24
SCI = 14

KIC = 0.21
SCI = 11

KIC = 0.28
SCI = 11
JOINTS models of caprock failure

- Vertical section in shale caprock
- Fractures initiate at base
- Best fracture connectivity with DI water
- Decreased fracture connectivity in dry CO$_2$ gas

Woodford: Dry CO2

KIC = 0.81
SCI = 68

Woodford: Ambient

KIC = 0.59
SCI = 63

Woodford: DI water

KIC = 0.32
SCI = 14
Caprock Integrity Sierra Mechanics

Test for effect of:
- wellbore orientation: vertical, horizontal
- injection rate: 3 Mt/yr, 5 Mt/yr for 30 years
- caprock/reservoir thickness: 50 m, 100 m, 200 m

on leakage across caprock with/without pre-existing fractures (implicit continuum scale)
Pore pressure within reservoir

- Lower pressure in horizontal wellbore cases
- Even for horizontal well, fractures can be reactivated causing leakage

Reservoir, cap: 100 m
Maximum saturation of CO$_2$ on top of seal

- Leakage for higher injection rates even in horizontal wellbore
- Long-term: same leakage for horizontal & vertical well @ 5 Mt/yr; later onset of leakage for horizontal well

Reservoir, cap: 100 m
Effect of layer thickness

Vertical well

- Thick reservoir is safer
- For given reservoir thickness, thicker caprock is safer
- Reservoir thickness is more important than caprock thickness

Horizontal well

- Combined reservoir & caprock thickness (h_{total}) controls leakage amount of to the top layer
- High total thickness is safer
Summary

• Wide range in fracture properties for different caprock lithologies
• Distinct stress corrosion effect observed in DT tests in water w/ varying composition
• Shale less fracture prone in dry CO$_2$ gas environment
• Fractures most transmissive at intermediate SCI
• Horizontal wells, thick reservoir & seal favor caprock integrity
 – Vertical well: Reservoir thickness most important
Accomplishments to Date

• Fracture mechanics testing on caprock lithologies in dry & aqueous environments of varying composition
• Conducted numerical simulations on fracture network evolution by chemically aided fracture growth
• Simulated caprock leakage behavior using in Sierra Mechanics continuum models for varying well/reservoir/caprock geometry
Next steps

• DT and short-rod fracture testing under
 – varying temperature
 – water composition
 – pressure
 – scCO$_2$
• Integration of continuum & fracture network modeling
 – Effects of varying K_{ic} & SCI included into Sierra Mechanics
• Validation of fracture network models with field fracture network observations
Synergy Opportunities

• Fracture mechanics analysis of Cranfield and FutureGen II core material
• Coordination with EFRC research on reservoir rock geomechanics
• Integration of lab results with fracture network modeling (phase-field, cohesive end-zone, peridynamics)
• Integration with hydraulic fracture research
Appendix
Organization Chart/Communication Plan

- Established Sandia-UT collaboration
 - Olson – Schultz – Eichhubl on joint industry projects
 - Dewers – Newell – Eichhubl on joint EFRC
Team

Peter Eichhubl
UT BEG

Pania Newell
Sandia

Tom Dewers
Sandia

Jon Olson
UT PGE

Rich Schultz
UT PGE

Xiaofeng Chen
UT BEG

Jon Major
UT BEG

Owen Callahan
UT BEG

Erick Wright
UT BEG
Gantt Chart

<table>
<thead>
<tr>
<th>Task/Subtask</th>
<th>Year 1</th>
<th>Year 2</th>
<th>Year 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Project Management and Planning</td>
<td>🟩🟩🟩🟩</td>
<td>🟩🟩🟩🟩</td>
<td>🟩🟩🟩🟩</td>
</tr>
<tr>
<td>2.1. Short rod fracture toughness tests</td>
<td>🟩🟩🟩🟩</td>
<td>🟩🟩🟩🟩</td>
<td>p</td>
</tr>
<tr>
<td>2.2. Double torsion tests</td>
<td>🟩🟩🟩🟩</td>
<td>🟩🟩🟩🟩</td>
<td>p</td>
</tr>
<tr>
<td>2.3. Fracturing in water-bearing supercritical CO2</td>
<td>🟩🟩🟩🟩</td>
<td>🟩🟩🟩🟩</td>
<td>p</td>
</tr>
<tr>
<td>3.1. Field fracture characterization</td>
<td>🟩🟩🟩🟩</td>
<td>🟩🟩🟩🟩</td>
<td>p</td>
</tr>
<tr>
<td>3.2. Textural and compositional fracture imaging</td>
<td>🟩🟩🟩🟩</td>
<td>🟩🟩🟩🟩</td>
<td>p</td>
</tr>
<tr>
<td>4.1. Discrete fracture modeling using Sierra Mechanics</td>
<td>🟩🟩🟩🟩</td>
<td>🟩🟩🟩🟩</td>
<td>p</td>
</tr>
<tr>
<td>4.2. Fracture network modeling using JOINTS</td>
<td>🟩🟩🟩🟩</td>
<td>🟩🟩🟩🟩</td>
<td>p</td>
</tr>
<tr>
<td>4.3. Upscaled modeling using Kayenta</td>
<td>🟩🟩🟩🟩</td>
<td>🟩🟩🟩🟩</td>
<td>p</td>
</tr>
<tr>
<td>5. Model validation and integration</td>
<td></td>
<td></td>
<td>p</td>
</tr>
</tbody>
</table>

* Short rod tests (task 2.1) are being performed under task 2.3 under confined conditions.
• **Journal, multiple authors:**