Development of the microBayesloc Method

Stephen C. Myers and Ana Aguiar
Josh White, Eric Matzel, Joe Morris, and Scott Scherman
Lawrence Livermore National Laboratory

The views expressed here are those of the author and do not necessarily represent those of LLNL, NNSA or the U.S. Government
MicroBayesloc is a cornerstone of LLNL’s SubTER effort

- LANL Stress Seedling
- Microseismic analysis
 - Open Fracture Imaging
- Pre-experiment modeling and monitoring design
- Geophysical inversion
- PNNL Muon Seedling
- LBL SURF Seedling
- NETL Big Data Seedling
- Oklahoma Big Data Set and Microseismic Analysis
- Inversion for fracture stress and conductivity
- SNL Fracture Seedling

LLNL analysis contributes to other efforts
MicroSeismic locations are used to assess the evolving state of stress.
Seismic locations are typically represented as point patterns.

- **Deep events** are located at greater depths.
- **Shallow events** are closer to the surface.
- Sensors are positioned at the top of the diagram.

The graph illustrates the distribution of events in a 3D space with coordinates X, Y, and Z (Elevation [z, km]).
MicroBasesloc produces validated uncertainty estimates

Point patterns work if seismicity trends are large compared to location uncertainty.
Bayesloc: Joint Probability Over Multiple-Event Parameters

- Event locations
- Travel times
- Measurement precision
- Phase labels

Statistical model

\[p(o, x, T, W, \sigma, V, \tau | a, d, w) \]

- \(o \) = origin times
- \(x \) = locations
- \(T \) = phase travel times
- \(W \) = phase labels
- \(\int \) = measurement precisions (pick)
- \(V \) = measurement precisions (diff)
- \(\tau \) = travel time corrections
- \(a \) = arrival times (picks)
- \(d \) = differential arrival times
- \(w \) = input phase labels

Myers, Johannesson, and Hanley (2007, 2009)
Recast Probability of Inverse Problem Into a Set of Forward Problems, Bayes Theorem

Multiple-Event Conditional Probability

\[p(o, x, T, W, \sigma, V, \tau \mid a, d, w) = \]

- \[p(a \mid o, T, W, \sigma) \] \text{Arrivals times given a set of locations and measurement uncertainties}
- \[p(d \mid o, T, W, V) \] \text{Differential times given a set of locations and measurement uncertainties}
- \[p(T \mid o, F(x), W, \tau) \] \text{Travel times given a set of locations and travel time corrections}
- \[p(W \mid w) \] \text{Phase labels given input phase labels}
- \[p(x, o)p(\sigma)p(\tau) \] \text{Prior constraints}
- \[/p(a)p(d) \] \text{Probability over all arrivals}
Simultaneous location and data analysis

Bayesian analysis: event location example (Bayesloc)

G. Johannesson
S. Myers
microBayesloc assesses components of error budget at Newberry

- S-wave uncertainty 3-times P-wave uncertainty and 40 times the sample rate
- Estimated time uncertainty (measurement + model + station corrections)
 - P waves: 0.05 sec
 - S waves: 0.16 sec

![Graph showing estimated summed error](image)

- Estimate of P: ~0.05 sec
- Estimate of S: ~0.16 sec
- Pick Model Station
 - ~0.02 (s) ~0.08 (s)
Adaptation of PageRank to assess microSeismic data

PageRank, as developed by Page et al. (1999) for webpages, is the probability that a “random surfer” will visit a particular web page.

We use PageRank to find the connectivity of seismic signals based on a correlation value.

\[\bar{x} = A\bar{x} \]

\(x = \text{PageRank} \)
\(A = \text{transition probability matrix} \)

\[a_{ij} = \begin{cases} \frac{p g_{ij}}{c_j} + \delta & \Rightarrow c_j \neq 0 \\ \frac{1}{n} & \Rightarrow c_j = 0 \end{cases} \]

\(g = 1 \) if cc exceeds a threshold
\(p = \text{probability that signals are linked} \)
\(\delta = \text{probability of a random link} \)

\[c_j = \sum_i g_{ij} \quad \delta = \frac{(1 - p)}{n} \]
Adaptation of PageRank to assess microSeismic data
A closer look...

We reexamine waveforms that are determined to be linked
1) Rotate to principle components of particle motion

Station NB19 (near surface)

Bulletin pick

Average S-wave
Repick – Bulletin
Time
0.02 seconds
2) Re-assess windowing for phase-specific correlation analysis

Station NB19 (near surface)

Updated S-wave window

Initial windowing of S-waves for waveform correlation-based differential time measurement included probable surface wave
3) Relocate using microBayesloc

Old locations

New Locations

Elevation [z, km]

East [x, km]

North [y, km]
3) Relocate using microBayesloc

Old locations

New Locations
What’s next: Langevin-Hastings for improved MCMC sampling

MCMC sampling is inefficient, potentially inaccurate, when differential times are used.

We are adapting the Langevin-Hastings approach to efficiently sample high-dimensional, correlated parameter spaces.

\[
\frac{d}{dx_i} \log p(\theta|a, d) = \sum_{j,k} \left(A_{ijk} \cdot \mu'_{ijk} + \sum_{i_p \in Q_{ijk}^2} D_{i_p ijk} \cdot \mu'_{ijk} - \sum_{i_q \in Q_{ijk}^1} D_{ii_q jk} \cdot \mu'_{ijk} \right)
\]
Summary

- LLNL supports the SubTER effort with microSeismic analysis, geomechanical modeling, and basic research.

- The microBayesloc method is a cornerstone of LLNL’s microSeismic analysis
 - Formulation of the joint probability function for multiple-event location
 - Event location probability volumes are representative of true error
 - Improvements to microBayesloc
 - Use of 3D velocity models of seismic wave speed
 - Joint use of differential and absolute arrival time measurements
 - Improved analysis of differential arrival time data sets (PageRank)
 - Improved efficiency of the microBayesloc MCMC algorithm
Thank You!