
Imaging Fracture Networks 
Using Joint Seismic and 

Electrical Change Detection 
Techniques

Hunter A. Knox
Sandia National Laboratories

U.S. Department of Energy
National Energy Technology Laboratory

Mastering the Subsurface Through Technology, Innovation and Collaboration:
Carbon Storage and Oil and Natural Gas Technologies Review Meeting

August 16-18, 2016



GTO: Alex Prisjatschew, Eric Hass, Michael Weathers

NETL: Traci Rodosta, Andrea Dunn, Erik Albenze, Kanwal
Mahajan

EMRTC: Robert Abernathy

SubTER Team: 
SNL: Dennis King, Mark Grubelich, James Knox, 
Stephanie James, Kirsten Chojnicki, Zack Cashion, 
Greg Cieslewski, David Chavira, Adam Foris, & 
Doug Blankenship 
PNNL: Tim Johnson, Vince Vermeul & Chris 
Strickland
LBNL: Jonathan Ajo-Franklin, Craig Ulrich, 
Pierpaolo Marchesini, Yuxin Wu, Tom Daley, & Paul 
Cook
LLNL: Joseph Morris
NMBG: Alex Rinehart

Acknowledgements

2



Presentation Outline
• Benefits to the Program & Project Overview
• Technical Status:

– Field site
– Installation
– Test Plan
– Video Data
– Seismic Results
– Distributed Acoustic Sensing (DAS) Results 
– Constant Pressure Test Results
– Real-time Electrical Resistance Tomographic 

(ERT) Results
– Joint Inversions
– Inversion For Fracture Conductivity 
– Automatic Picking Results

• Accomplishments to Date
• Synergy Opportunities
• Concluding Remarks
• Questions
• Appendix
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Benefit to the Program 

Current Limitations:
1. Data may be insensitive to small-scale 

fractures that are important to system 
function. 

2. Data collection and processing times limit 
temporal and spatial imaging resolution.

3. Important fracture attributes (e.g. 
permeability) are not routinely estimated.

Problem Statement:
Real time methods of characterizing fracture networks and 
monitoring fracture flow are required to provide actionable 
feedback during stimulation, injection, and extraction 
operations. 
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Project Overview:  
Goals and Objectives

Demonstrate geophysical 
imaging technologies that 
will characterize:

1. 3D extent and distribution 
of fractures stimulated 
from two explosive 
sources

2. 3D fluid transport within 
the stimulated fracture 
network through use of a 
particulate tracer

These data will also be used to: 
1. Develop methods of estimating fracture attributes from seismic data
2. Develop methods of assimilating disparate and transient data sets to improve fracture 

network imaging resolution
3. Advance capabilities for near real-time inversion of cross-hole tomographic data
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Field Site:
• Blue Canyon Dome, atop Socorro Peak west of Socorro, NM

• Weathered Rhyolite 0-30 ft below ground surface (bgs); Un-
weathered Rhyolite > 30 ft bgs

• 1 stimulation borehole (70 ft deep) surrounded by 4 monitoring 
boreholes (75 ft deep)



Installation - Fall 2015

Fiber Optic 
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ERT Installation

Fiber Loop & 
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Field Campaign – April 2016
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Field 
Campaign 
April 2016

Gantt 
Chart
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Energetic Stimulation #2
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Downhole
Camera Footage
• Camera data is from post energetic 

stimulation #2

• Camera is located 50.0 ft below 
ground surface (bgs)

• Shot depths in both cases were 58-
65 ft bgs

• Two near vertical fractures are 
visible

• Close examination appears to show 
that the fractures are self propped

• Along other sections of the borehole, 
more than 2 fractures were visible 
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Seismic Tomography
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Acquisition
• 9 different vertical source-

receiver offsets for each tube 
pair (0º, 15º, -15º, 30º, -30º, 
45º, -45º, 60º, and -60º)

• Acquisition time for each one 
of these tests is only about 
6.5 hours

• 1 week to pick the data and 2 
days to perform the 
inversion.  

• Each tomogram is 
constructed using 
approximately 25,000 picks 
over the 8x8x35 foot 
(2.44x2.44x10.7 m) volume. 

Observations
• Big changes in coda
• Coherent (in depth) changes 

in arrival time
• Initial tomogram (pre-shot) 

shows similar structure to 
ERT



ML-CASSM
• Goal: map fracture time evolution & effects of fluid pressure
• Largest ML-CASSM system deployment to date (22 S x 72 R)
• Data recorded before/after fractures + continuously during pump tests & 

zvi injection
• System active for 1.5 weeks, recorded 55,000 gathers ~ 2000 

tomographic datasets
• Challenges included : high wind noise levels, power instability, cable 

issues
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ML-CASSM Data : Fracture Impact

Before F1

After F1

Observations

• Baseline, excellent 
bandwidth (signal to 10 
khz and beyond)

• Fracturing induced 
significant attenuation 
change (visible in A & f)

• Higher order 
resonances of source 
particularly attenuated.

• Only small change in P-
phase (velocity 
reduction)

• Big changes in coda

West to North, source at ~21 m

3 khz 5 khz 7-8 khz
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Distributed Acoustic Sensing (DAS) –
Shot #1 Data Example

(Left) Gather after despiking, bandpass (top end at 50 khz), and trace balancing. Left is a large subset 
(700 traces) right is a zoom around first break in one of the wells. Data is temporally aliased. 

(Right) Top: raw trace; Middle: after despiking and filtering; Bottom: amplitude spectrum
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DAS - Seismic Interferometry
1. Cross-correlate ambient noise recordings between channels
2. Stack to increase signal-to-noise ratio
3. Measure relative velocity variations (dv/v) based on delay in phase arrivals

END GOAL = Detect temporal and spatial changes in seismic velocity
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Constant-Rate Injection Testing

• Analysis of pressure falloff data 
section for quantitative estimates 
of hydraulic conductivity (K)

• Comparison of successive tests 
provides a measure of change in 
K associated with stimulations

• Agarwal (1980) time 
transformation applied to allow 
analysis of pressure falloff 
response using standard 
analytical well-function models

• Pressure falloff data fit to a vertical 
fracture model (Gringarten and 
Witherspoon, 1972)

• Difference in hydraulic response 
for three borehole conditions 
tested was readily apparent

Data section 
analyzed
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Constant–Rate 
Injection Test Analysis
• Fit of pressure and pressure 

derivative (diagnostic) data to a 
vertical fracture model

Shot #1 
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Hydraulic 
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Permeability
(md)

Baseline 7E-5 to 3E-9
(book value range)

2E-2 to 1E-6
(book value range)

Post-Shot #1 0.087 32

Post-Shot #2 0.25 92
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Pre-fracture Baseline ERT Image

Full View East/West 
Cross Section

EC
contact

• Low electrical 
conductivity (EC) 
with high variability 
(2 orders of 
magnitude)

• Steeply dipping EC 
structure 

• Highly resistive 
rock deep in the 
section (more 
competent?)
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Real-time 4D imaging during ZVI injection
westwest east south north

westwest east south north

• Injection time: 3 hrs
• Injection vol: 110 gal
• Image frame rate: 15 min.

NOTES:
• Post detonation camera 

log shows multiple 
dominant vertical 
fractures. 

• ZVI solution appears to 
migrate primarily into the 
east/west trending 
fracture.

• ZVI reaches outer 
boundaries of imaging 
zone, likely beyond
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Fly-around view of ZVI-filled fracture zone
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Joint Inversion Development
Simulated Potential

Simulated Travel Time

Joint ERT/Seismic Simulation

• Enables ERT and Seismic/Radar data to be 
jointly inverted

• Leverages assumption that fractures induced 
changes in geophysical properties are co-
located.

• Joint constraints significantly improve 
resolution.

• Goal: ‘Real-time’ joint inversion of large-N 
travel time and ERT data for fracture 
characterization and/or flow monitoring. 

Algorithm Development
• Highly scalable parallel modeling/inversion
• Side by side forward simulations
• Unstructured tetrahedral mesh (finite element 

for ERT, fast marching method for travel time)  
• Advanced a priori constraints
• Fresnel Volume Sensitivity
• Status: Complete (Simulated), Testing (Field)
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Inversion for fracture conductivity
• Remote sensing of fractures
• How can we extract the most 

information? Permeability?
• Move beyond empirical rules

• Self-consistent
• Predictive

Asperity i

 

 

 

Precipitated
pillar

Pristine fracture Fracture containing
precipitated pillars
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Our approach: Improvements that deliver results early 
and can be extended to a next-generation capability

• Current effort: Apply a modified version of Sayers and den 
Boer (2012) workflow
• Utilize latest models coupling geophysics-mechanics and 

conductivity (Morris et al., 2016)

• Future: Introduce additional
self-consistent fracture models
to develop a next-generation
workflow:
• Predictive – Different geological settings
• Extensible – Different geophysical attributes
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Automatic Picking Results

25

• The automatic first arrival time estimates 
are mostly reliable. 

• Misestimated first arrival times are 
identifiable by their large changes in 
velocity from their neighbors. 

• S-wave arrivals are more problematic, 
but, for low angle offsets and in 
undamaged rock, the estimates provide 
a meaningful constraint to the velocity 
structure of the rock

• The amount of time required to perform 
the analysis is short (less than 10 s for 
120 traces)



Accomplishments to Date
– Demonstrated:

• Successful multi-organizational (FFRDC, private industry, and 
academia) scientific collaboration and field execution

• High resolution (spatial and temporal) geophysical imaging
• Real-time imaging of fracture generation and tracer migration
• Dense multi-disciplinary data acquisition

– Developed and/or Improved:
• Joint inversion of geophysical data
• Inversion for fracture conductivity
• Automatic picking of high frequency seismic data
• 3D change detection imaging using DAS technology
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Synergy Opportunities
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Questions?
PNNL Silixa LBNL SNL

National Lab Team
April 2016 Fracture Test
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