Carbon Life Cycle Analysis of CO$_2$-EOR for Net Carbon Negative Oil (NCNO) Classification

DE-FE0024433

Vanessa Nuñez-Lopez
Bureau of Economic Geology
The University of Texas

U.S. Department of Energy
National Energy Technology Laboratory
Carbon Storage R&D Project Review Meeting
Mastering the Subsurface through Technology Innovation and Collaboration
August 15 - 18, 2016
Presentation Outline

• Project overview
 – Goals and objectives
 – Methodology
• Accomplishments to date
• Expected Outcomes
• Summary
Problem Statement

- Is CO$_2$-EOR a valid option for greenhouse gas emission reduction? Are geologically stored carbon volumes larger than direct/indirect emissions resulting from CO$_2$-EOR operations?
Project Overview: Goals and Objectives

Goal: To develop a clear, universal, repeatable methodology for making the determination of whether a CO$_2$-EOR operation can be classified as Net carbon Negative Oil (NCNO)

Objectives:

- Identify and frame critical carbon balance components for the accurate mass accounting of a CO$_2$-EOR operation.
- Develop strategies that are conducive to achieving a NCNO classification.
- Develop a comprehensive, yet commercially applicable, monitoring, verification, and accounting (MVA) methodology.
Related Literature

Life Cycle Inventory of CO₂ in an Enhanced Oil Recovery System

Paulina Iaravillo,1,* Argentina, Michael Golden,1,4 Argentina, and Sarah J. McCoy1

1School of Business and Engineering, Department of Mechanical Engineering, Pennsylvania State University, University Park, PA 16802, Pennsylvania, USA

Received March 14, 2007, Revised Manuscript Received August 27, 2007, Accepted September 24, 2007

Abstract

Life Cycle Inventory of CO₂ in an Enhanced Oil Recovery System

Reducing Carbon Dioxide Emissions with Enhanced Oil Recovery Projects: A Life Cycle Assessment Approach

Anne Christine Ayaguetta,1,4†,†† Miriam Leu-On,† and Arthur M. Winer2,††

1Department of Civil and Environmental Engineering, University of Southern California, Los Angeles, California 90007, and 2School of Public Health, UCLA, School of Public Health, Los Angeles, California 90095-1772

Evaluating the Climate Benefits of CO₂-Enhanced Oil Recovery Using Life Cycle Analysis

Gregory Conney6

Associate, Energy Resources Program, University of California, Berkeley, California, USA

James Littlefield

Associate, Energy Resources Program, University of California, Berkeley, California, USA

Joe Mazzetti

Lead Associate, Energy Resources Program, University of California, Berkeley, California, USA

Timothy J. Skone

Senior Environmental Engineer, National Energy Technology Laboratory, 625 Codman Mill Road, P.O. Box 10940, Pittsburgh, Pennsylvania 15220, United States

Supporting Information

ABSTRACT: This study uses life cycle analysis (LCA) to evaluate the greenhouse gas (GHG) performance of carbon dioxide (CO₂) enhanced oil recovery (EOR) systems. A detailed gate-to-gate LCA model of EOR was developed and incorporated into a cradle-to-gate boundary with a functional unit of 1 MJ of combusted gasoline. The cradle-to-gate model includes two sources of CO₂: natural and anthropogenic (fossil fuel). The latter is assumed to be captured and sequestered in CO₂ underground storage (US). The results show that EOR projects can achieve significant reductions in CO₂ emissions compared to conventional EOR systems. The use of captured CO₂ reduces the overall greenhouse gas emissions by approximately 40%, depending on the specific EOR system and CO₂ source. The study also highlights the potential for CO₂ capture and storage to mitigate the impacts of climate change and contribute to the goal of reducing greenhouse gas emissions.
Selection of system boundaries for NCNO classification: Cradle-to-Grave

- Extraction, processing, fossil fuel transport
 - Power Plant
 - CO2 capture
 - Natural CO2 reservoir
 - CO2 transport to
 - CO2-EOR operations
 - Crude oil transport
 - Petroleum refining
 - Product transport
 - Product combustion

- Geological carbon sequestration
- Construction of facilities

Selected system boundary

Study focus
Methodology: Select Field Setting

• (Cranfield, Mississippi)
 – It provides the optimal mass accounting data set as it was required by its comprehensive SECARB MVA program
 – It is a desirable direct injection (no WAG), which is favorable for achieving NCNO
 – Pattern geometry and operations repeated systematically around field development
 – Provides a simpler environment than many CO$_2$-EOR floods
Methodology: Numerical Simulation

- Utilize Cranfield pattern calibrated models to:
 - Run numerical simulations for different novel and standard CO₂ injection scenarios (WAG, direct CO₂ injection)
 - Evaluate how the variability of CO₂ utilization ratios for the different injection scenarios affects the identified system components.
 - Understand the carbon balance evolution from start of injection to completion.
Methodology: Develop MVA Plan

• Use predictive flow and pressure elevation results to develop a generic but comprehensive MVA plan that is based on:
 – existing regulatory monitoring requirements
 – existing best practices
 – a number of proposed and suggested processes that are currently being considered for possible future regulatory or credit trading conditions
Accomplishments to Date

Identification of critical CO₂ emission components within the EOR site

GHG Intensity

- Injection wells
- Production wells
- Collection facility
- Fluid phase separation (oil, water, gas)
- Separation oil/water
- Gas processing plant (*)
- CO₂ compression
- CO₂ transport to field

- Water injection
- CO₂ compression
- CO₂ transport to field

- Water storage
- CH₄ emissions
- Venting or Flaring
- Water disposal
- Venting or Flaring

- DOE-NETL: 2013, 2015 (Skone, Conney)
 a) Fract-Ref: 10-17%
 b) R: H: 5-6%
 c) Membr: 2-5%

- SACROC case 2007: 30%
- SACROC case 2007: 20%

- DOE-NETL 2009: 5-10%

- SACROC case 2007, 2009 (Skone, Conney)
 a) Fract-Ref: 5-6%
 b) R: H: 3-6%
 c) Membr: 0-1%

- DOE-NETL: 2009: 8% (OTHERS)

- DOE-NETL: 2009: 5-10%

- SACROC case 2007: 50%

- Gas processing technologies:
 1) Fractionation
 2) Refrigeration
 3) Ryan-Holmes
 4) Membrane
GHG Intensity per EOR Component

<table>
<thead>
<tr>
<th>EOR Component</th>
<th>Fract - Refrg</th>
<th>Ryan Holmes</th>
<th>Membrane</th>
</tr>
</thead>
<tbody>
<tr>
<td>Injection Wells</td>
<td>1.5</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Production Wells</td>
<td>13.5</td>
<td>9.5</td>
<td>7</td>
</tr>
<tr>
<td>Fluid Phase Separation</td>
<td>6.5</td>
<td>4.5</td>
<td>3.5</td>
</tr>
<tr>
<td>Gas Processing</td>
<td>9.5</td>
<td>37.5</td>
<td>53.5</td>
</tr>
<tr>
<td>CO2 Compression</td>
<td>46</td>
<td>32.5</td>
<td>35</td>
</tr>
</tbody>
</table>

GHG intensity of EOR components per gas processing method.
Study focus: CO$_2$ utilization ratios

CO$_2$ injection [MMCF]

CO$_2$ Utilization [MMCF/bbl]

CO$_2$-EOR/Storage Carbon Balance

CO$_2$ emissions

Oil to market

recycle

Brine

Oil

CO$_2$

Produced oil [bbl]
Field Study

• (Cranfield, Mississippi)
 – It provides the optimal mass accounting data set as it was required by its comprehensive SECARB MVA program
 – It is a desirable direct injection (no WAG), which is favorable for achieving NCNO
 – Pattern geometry and operations repeated systematically around field development
 – Provides a simpler environment than many CO$_2$-EOR floods
Cranfield overview:

- Clastic Mississippi field
- Apex of 4-way closed anticline
- Main pay is ~10,000 ft deep
- $P_i = 4,600$ psi, $T_i = 150^\circ F$
- Original gas cap
- Productive during 1940s and 50s
- CO$_2$ injection started in 2007
- Available mass accounting data as required by SECARB’s monitoring program.
Methodology: Numerical Simulation

• Utilize Cranfield pattern calibrated models to:
 – Run numerical simulations for different novel and standard CO$_2$ injection scenarios (WAG, direct CO$_2$ injection)
 – Evaluate how the variability of CO$_2$ utilization ratios for the different injection scenarios affects the GHG intensity of the system components (New contribution)
 – Understand the carbon balance evolution from start of injection to completion (New contribution)

• Current activities:
 ✓ Updated existing Cranfield models: added physics
 ✓ Relative permeability laboratory experiments
 ✓ History matching for historic Cranfield production (1944-1972)
Methodology: Numerical Simulation

Compositional model simulates CO$_2$ injection
Methodology: Numerical Simulation

Preliminary History Matching of Primary Production
Trapping Mechanisms

- Additional funds allowed us to add valuable work to the modeling tasks by studying the trapping mechanisms that contribute to the geological permanence of the stored CO$_2$

1. Residual/capillary trapping
2. CO$_2$ dissolution into brine
3. CO$_2$ dissolution into oil
4. Mineral trapping

Benson, 2003
New CO$_2$-brine Relative Permeability

12 Cranfield core plugs were sent to a commercial laboratory.

Relative permeability experiments will be run in 2 composite samples consisting of 6 aligned core plugs.

Summary of Routine Core Analyses Results

<table>
<thead>
<tr>
<th>Sample Number</th>
<th>Sample Type</th>
<th>Sample Depth, feet</th>
<th>Permeability, millidarcys to Air</th>
<th>Klinkenberg</th>
<th>NCS Porosity, percent</th>
<th>Grain Density, gm/cc</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>Horizontal</td>
<td>10452.66</td>
<td>312.1</td>
<td>289.0</td>
<td>27.7</td>
<td>2.68</td>
</tr>
<tr>
<td>23</td>
<td>Horizontal</td>
<td>10452.83</td>
<td>483.3</td>
<td>453.5</td>
<td>28.3</td>
<td>2.69</td>
</tr>
<tr>
<td>24</td>
<td>Horizontal</td>
<td>10453.00</td>
<td>278.0</td>
<td>256.8</td>
<td>27.9</td>
<td>2.69</td>
</tr>
<tr>
<td>25</td>
<td>Horizontal</td>
<td>10453.45</td>
<td>107.5</td>
<td>95.2</td>
<td>26.9</td>
<td>2.69</td>
</tr>
<tr>
<td>26</td>
<td>Horizontal</td>
<td>10454.04</td>
<td>207.7</td>
<td>189.3</td>
<td>28.3</td>
<td>2.69</td>
</tr>
<tr>
<td>27</td>
<td>Horizontal</td>
<td>10454.20</td>
<td>296.4</td>
<td>263.4</td>
<td>28.9</td>
<td>2.69</td>
</tr>
<tr>
<td>28</td>
<td>Horizontal</td>
<td>10454.45</td>
<td>237.0</td>
<td>217.2</td>
<td>28.2</td>
<td>2.69</td>
</tr>
<tr>
<td>29</td>
<td>Vertical</td>
<td>10451.80 - 10452.30</td>
<td>6.79</td>
<td>5.61</td>
<td>28.3</td>
<td>2.69</td>
</tr>
<tr>
<td>30</td>
<td>Vertical</td>
<td>10452.60 - 10454.10</td>
<td>10.3</td>
<td>8.05</td>
<td>28.7</td>
<td>2.69</td>
</tr>
<tr>
<td>31</td>
<td>Vertical</td>
<td>10453.60 - 10454.10</td>
<td>11.2</td>
<td>9.17</td>
<td>28.9</td>
<td>2.70</td>
</tr>
<tr>
<td>32</td>
<td>Vertical</td>
<td>10455.30 - 10455.80</td>
<td>3.71</td>
<td>2.97</td>
<td>28.2</td>
<td>2.70</td>
</tr>
<tr>
<td>33</td>
<td>Vertical</td>
<td>10455.30 - 10455.80</td>
<td>9.40</td>
<td>7.39</td>
<td>28.2</td>
<td>2.69</td>
</tr>
</tbody>
</table>

Average values: 160.0, 155.0, 26.1, 2.69
Expected Outcomes

• A comprehensive carbon balance analysis of a CO$_2$-EOR operation with an accurate mass accounting methodology for determining whether the operation can be classified as NCNO.

• A recommendation of CO$_2$ surface operation and injection strategies that are conducive to achieving a NCNO classification.

• A universal MVA methodology encompassing the entire CO$_2$-EOR operation and inclusive of pre CO$_2$ injection, injection, and stabilization periods.
Summary

• Accomplishments:
 ✓ Selection of system boundaries relevant to NCNO classification: gate-to-grave
 ✓ Identification of critical CO$_2$ emission components within the EOR site
 ✓ Gathered and classifying Cranfield mass accounting data
 ✓ Built Cranfield static model
 ✓ Completed historic and EOR history matching
 ✓ Started numerical simulation tasks
 ✓ Build a model for energy consumption of the CO$_2$-EOR operation

• Future Plans:
 – Start scenario analysis
 – Link results from numerical simulations with energy consumption model
 – Develop an MVA plan
Organization Chart

Lead Organization
UT-BEG
Michael Young, Associate Director

BEG Administration

Seyyed Hosseini (Dynamic Modeling)
Research Associate

Reza Ganjdanesh
Postdoctorate Scholar

Principal Investigator
Vanessa Nuñez-Lopez
Research Scientist Associate

Tip Meckel (Static Modeling, Mass Accounting)
Research Scientist

Senior Oversight
Larry Lake, UT-PGE Faculty
Susan Hovorka, UT-BEG

Susan Hovorka (Mass Accounting, MVA)
Sr. Research Scientist

BEG Researcher
TBD
Gantt Chart

<table>
<thead>
<tr>
<th>Task</th>
<th>Tasks</th>
<th>BUDGET PERIOD 1</th>
<th>BUDGET PERIOD 2</th>
<th>BUDGET PERIOD 3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>qtr1</td>
<td>qtr2</td>
<td>qtr3</td>
</tr>
<tr>
<td>1</td>
<td>Project Management, Planning, and Reporting</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.1</td>
<td>Revision and Maintenance of Project Management Plan</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.2</td>
<td>Management and Reporting</td>
<td>Q</td>
<td>Q</td>
<td>Q</td>
</tr>
<tr>
<td>2</td>
<td>Project Framework and Data Gathering</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Reservoir Mass Accounting Methodology</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Static and Dynamic Modeling</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.1</td>
<td>Static Model</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.2</td>
<td>EOR-storage performance model development</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Monitoring, Verification, and Accounting (MVA) methodology</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Q = Quarterly Report; A = Annual Report; F = Final Report</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>D = Deliverable</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Bibliography

None yet