Project Overview

Primary goal of the project is to characterize the Plio-Miocene sediments of the depleted oil/gas fields of the Ship Shoal Area for high volume CO₂ storage.

The Ship Shoal area is located on the continental shelf offshore Louisiana in the federal waters within the northern Gulf of Mexico.

Findings To Date

Geological Review

Findings To Date

CO₂ Migration Model

Modified from GOMsmart.com; Earth Science Associates

Resource Estimation

NETL Equation:

\[G_{CO2} = A_t h_g \Omega_{tot} \rho \varepsilon_{saline} \]

where, \(G_{CO2} \) = CO₂ storage mass estimate, \(A_t \) = Total area, \(h_g \) = Gross thickness, \(\Omega_{tot} \) = Total porosity, \(\rho \) = Density of CO₂ at depth, and \(\varepsilon_{saline} \) = Storage efficiency factor. [1]

Using BOEM reservoir data, the existing oil/gas fields in northern Ship Shoal have the potential to store:

- **P10** = 12 million tons
- **P50** = 47 million tons
- **P90** = 127 million tons of CO₂

Project Objectives

The project will proceed over two years.

Objectives of Phase I:

- Complete detailed review and interpretation of publically available geologic data to identify targets and seals.
- Provide preliminary estimation of storage volume for each oil/gas field using NETL approved calculation.
- Produce Pliocene and Miocene structure maps of northern Ship Shoal.
- Develop detailed geologic model of Ship Shoal (SS) Block 107 field.

Objectives of Phase II:

- Develop integrated 3D fluid-flow and geomechanics model of SS Block 107 field to simulate long-term injectivity, migration, storage permanence, and induced fault reactivation.
- Complete a risk assessment to evaluate the potential of leakage during CO₂ injection.
- Analyze existing infrastructure of oil and gas for CO₂ transport.
- Provide a refined storage capacity estimation for SS Block 107 field based on modeling and risk assessment.

Acknowledgements

This material is based upon work supported by the Department of Energy under Award Number DE-FE0026041.

References

